Skip to main content
Log in

Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture. KYNA totally preserved cytoskeletal organization, cell morphology, and redox imbalance in mixed cultures exposed to QUIN. However, KYNA partially prevented morphological alteration in isolated primary astrocytes and failed to protect the morphological alterations of neurons caused by QUIN exposure. Moreover, KYNA prevented QUIN-induced microglial activation and upregulation of ionized calcium-binding adapter molecule 1 (Iba-1) and partially preserved tumor necrosis factor-α (TNF-α) level in mixed cultures. TNF-α level was also partially preserved in astrocytes. In addition to the mechanisms dependent on redox imbalance and microglial activation, KYNA prevented downregulation of connexin-43 and the loss of functionality of gap junctions (GJs), preserving cell–cell contact, cytoskeletal organization, and cell morphology in QUIN-treated cells. Furthermore, the toxicity of QUIN targeting the cytoskeleton of mixed cultures was not prevented by the N-methyl-D-aspartate (NMDA) antagonist MK-801. We suggest that KYNA protects the integrity of the cytoskeleton of mixed cultures by complex mechanisms including modulating microglial activation preventing oxidative imbalance and misregulated GJs leading to disrupted cytoskeleton in QUIN-treated cells. This study contributed to elucidate the molecular basis of KYNA protection against QUIN toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37(1):137–162. doi:https://doi.org/10.1038/npp.2011.205

    Article  CAS  PubMed  Google Scholar 

  2. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477. doi:https://doi.org/10.1038/nrn3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365. doi:https://doi.org/10.1111/j.1742-4658.2012.08485.x

    Article  CAS  PubMed  Google Scholar 

  4. Stipek S, Stastny F, Platenik J, Crkovska J, Zima T (1997) The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30(2):233–237

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez-Martinez E, Camacho A, Maldonado PD, Pedraza-Chaverri J, Santamaria D, Galvan-Arzate S, Santamaria A (2000) Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res 858(2):436–439

    Article  CAS  PubMed  Google Scholar 

  6. Rios C, Santamaria A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res 16(10):1139–1143

    Article  CAS  PubMed  Google Scholar 

  7. Ting KK, Brew BJ, Guillemin GJ (2009) Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease. J Neuroinflammation 6:36. doi:https://doi.org/10.1186/1742-2094-6-36

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pierozan P, Goncalves Fernandes C, Ferreira F, Pessoa-Pureur R (2014) Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats. Brain Res 1577:1–10. doi:https://doi.org/10.1016/j.brainres.2014.06.024

    Article  CAS  PubMed  Google Scholar 

  9. Pierozan P, Zamoner A, Soska AK, de Lima BO, Reis KP, Zamboni F, Wajner M, Pessoa-Pureur R (2012) Signaling mechanisms downstream of quinolinic acid targeting the cytoskeleton of rat striatal neurons and astrocytes. Exp Neurol 233(1):391–399. doi:https://doi.org/10.1016/j.expneurol.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  10. Pierozan P, Biasibetti H, Schmitz F, Avila H, Parisi MM, Barbe-Tuana F, Wyse AT, Pessoa-Pureur R (2016) Quinolinic acid neurotoxicity: differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes. Biochim Biophys Acta 1863(12):3001–3014. doi:https://doi.org/10.1016/j.bbamcr.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  11. Pierozan P, Pessoa-Pureur R (2017) Cytoskeleton as a target of quinolinic acid neurotoxicity: insight from animal models. Mol Neurobiol

  12. Schwarcz R, Stone TW (2017) The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112(Pt B):237–247. doi:https://doi.org/10.1016/j.neuropharm.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  13. Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154(1):85–87

    Article  CAS  PubMed  Google Scholar 

  14. Miranda AF, Sutton MA, Beninger RJ, Jhamandas K, Boegman RJ (1999) Quinolinic acid lesion of the nigrostriatal pathway: effect on turning behaviour and protection by elevation of endogenous kynurenic acid in Rattus norvegicus. Neurosci Lett 262(2):81–84

    Article  CAS  PubMed  Google Scholar 

  15. Moroni F, Cozzi A, Sili M, Mannaioni G (2012) Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm (Vienna) 119(2):133–139. doi:https://doi.org/10.1007/s00702-011-0763-x

    Article  CAS  Google Scholar 

  16. Moroni F, Fossati S, Chiarugi A, Cozzi A (2007) Kynurenic acid action in brain and periphery. Int Congr Serie 1304:305–314

    Article  CAS  Google Scholar 

  17. Filpa V, Carpanese E, Marchet S, Prandoni V, Moro E, Lecchini S, Frigo G, Giaroni C et al (2015) Interaction between NMDA glutamatergic and nitrergic enteric pathways during in vitro ischemia and reperfusion. Eur J Pharmacol 750:123–131

    Article  CAS  PubMed  Google Scholar 

  18. Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17(3):455–461. doi:https://doi.org/10.1016/j.nbd.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Brew BJ, Guillemin GJ (2011) Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem 118(5):816–825. doi:https://doi.org/10.1111/j.1471-4159.2010.07159.x

    Article  CAS  PubMed  Google Scholar 

  20. Pierozan P, Ferreira F, Ortiz de Lima B, Goncalves Fernandes C, Totarelli Monteforte P, de Castro MN, Bincoletto C, Soubhi Smaili S et al (2014) The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid. Exp Cell Res 322(2):313–323. doi:https://doi.org/10.1016/j.yexcr.2014.02.024

    Article  CAS  PubMed  Google Scholar 

  21. Pierozan P, Ferreira F, de Lima BO, Pessoa-Pureur R (2015) Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction. J Neurosci Res 93(2):268–284. doi:https://doi.org/10.1002/jnr.23494

    Article  CAS  PubMed  Google Scholar 

  22. Pierozan P, Biasibetti H, Schmitz F, Avila H, Fernandes CG, Pessoa-Pureur R, Wyse AT (2016) Neurotoxicity of methylmercury in isolated astrocytes and neurons: the cytoskeleton as a main target. Mol Neurobiol. doi:https://doi.org/10.1007/s12035-016-0101-2

  23. Baranes K, Kollmar D, Chejanovsky N, Sharoni A, Shefi O (2012) Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions. J Mol Histol 43(4):437–447. doi:https://doi.org/10.1007/s10735-012-9422-2

    Article  PubMed  Google Scholar 

  24. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  CAS  PubMed  Google Scholar 

  25. Goldberg GS, Moreno AP, Bechberger JF, Hearn SS, Shivers RR, MacPhee DJ, Zhang YC, Naus CC (1996) Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative. Exp Cell Res 222:48–53

    Article  CAS  PubMed  Google Scholar 

  26. Braidy N, Grant R, Adams S, Guillemin GJ (2010) Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J 277(2):368–382. doi:https://doi.org/10.1111/j.1742-4658.2009.07487.x

    Article  CAS  PubMed  Google Scholar 

  27. Zhang FF, Morioka N, Nakashima-Hisaoka K, Nakata Y (2013) Spinal astrocytes stimulated by tumor necrosis factor-alpha and/or interferon-gamma attenuate connexin 43-gap junction via c-jun terminal kinase activity. J Neurosci Res 91(6):745–756. doi:https://doi.org/10.1002/jnr.23213

    Article  CAS  PubMed  Google Scholar 

  28. Pierozan P, Zamoner A, Soska AK, Silvestrin RB, Loureiro SO, Heimfarth L, Mello e Souza T, Wajner M et al (2010) Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol 224(1):188–196. doi:https://doi.org/10.1016/j.expneurol.2010.03.009

    Article  CAS  PubMed  Google Scholar 

  29. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee J, Alkondon M, Albuquerque EX (2012) Kynurenic acid inhibits glutamatergic transmission to CA1 pyramidal neurons via alpha7 nAChR-dependent and -independent mechanisms. Biochem Pharmacol 84(8):1078–1087. doi:https://doi.org/10.1016/j.bcp.2012.07.030

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281(31):22021–22028. doi:https://doi.org/10.1074/jbc.M603503200

    Article  CAS  PubMed  Google Scholar 

  32. Di Serio C, Cozzi A, Angeli I, Doria L, Micucci I, Pellerito S, Mirone P, Masotti G, Moroni F, Tarantini F (2005) Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF)-1 and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol 25(6)

  33. Lugo-Huitron R, Blanco-Ayala T, Ugalde-Muniz P, Carrillo-Mora P, Pedraza-Chaverri J, Silva-Adaya D, Maldonado PD, Torres I et al (2011) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33(5):538–547. doi:https://doi.org/10.1016/j.ntt.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  34. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977–2992. doi:https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  35. Rinaldi M, Caffo M, Minutoli L, Marini H, Abbritti RV, Squadrito F, Trichilo V, Valenti A, Barresi V, Altavilla D, Passalacqua M, Caruso G (2016) ROS and brain gliomas: an overview of potential and innovative therapeutic strategies. Int J Mol Sci 17 (6). doi:https://doi.org/10.3390/ijms17060984

  36. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25. doi:https://doi.org/10.1038/nrn1434

    Article  PubMed  Google Scholar 

  37. Fernandes CG, Pierozan P, Soares GM, Ferreira F, Zanatta A, Amaral AU, Borges CG, Wajner M et al (2015) NMDA receptors and oxidative stress induced by the major metabolites accumulating in HMG lyase deficiency mediate hypophosphorylation of cytoskeletal proteins in brain from adolescent rats: potential mechanisms contributing to the neuropathology of this disease. Neurotox Res 28(3):239–252. doi:https://doi.org/10.1007/s12640-015-9542-z

    Article  CAS  PubMed  Google Scholar 

  38. Sparaco M, Gaeta LM, Tozzi G, Bertini E, Pastore A, Simonati A, Santorelli FM, Piemonte F (2006) Protein glutathionylation in human central nervous system: potential role in redox regulation of neuronal defense against free radicals. J Neurosci Res 83(2):256–263. doi:https://doi.org/10.1002/jnr.20729

    Article  CAS  PubMed  Google Scholar 

  39. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267(16):4928–4944

    Article  CAS  PubMed  Google Scholar 

  40. Sorokin A (2016) Nitric oxide synthase and cyclooxygenase pathways: a complex interplay in cellular signaling. Curr Med Chem 23(24):2559–2578

    Article  CAS  PubMed  Google Scholar 

  41. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86. doi:https://doi.org/10.1016/j.pneurobio.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  42. Jha MK, Lee WH, Suk K (2016) Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem Pharmacol 103:1–16. doi:https://doi.org/10.1016/j.bcp.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  43. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365. doi:https://doi.org/10.1016/j.nurt.2010.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M (1998) Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem 273(21):12725–12731

    Article  CAS  PubMed  Google Scholar 

  45. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263(5154):1768–1771

    Article  CAS  PubMed  Google Scholar 

  46. Orellana JA, Stehberg J (2014) Hemichannels: new roles in astroglial function. Front Physiol 5:193. doi:https://doi.org/10.3389/fphys.2014.00193

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Pierozan.

Additional information

Highlights

QUIN-elicited cytoskeleton disruption is protected by KYNA.

KYNA protects against QUIN by maintaining redox balance.

Microglial activation caused by QUIN is protected by KYNA effects.

Disturbed cell communication is protected by KYNA through proper cell–cell interaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierozan, P., Biasibetti-Brendler, H., Schmitz, F. et al. Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum. Mol Neurobiol 55, 5111–5124 (2018). https://doi.org/10.1007/s12035-017-0749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0749-2

Keywords

Navigation