Skip to main content

Advertisement

Log in

Early Preclinical Changes in Hippocampal CREB-Binding Protein Expression in a Mouse Model of Familial Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The molecular basis of memory loss in Alzheimer’s disease (AD), the main cause of senile dementia, is under investigation. In the present study, we have focused on the early hippocampal memory-related changes in APPswe/PS1dE9 (APP/PS1) mice, a well-established mouse model of familial AD. It is well known that molecules like cAMP response element binding (CREB) and binding protein (CBP) play a crucial role in memory consolidation. We analyzed CBP on its transcriptional activity and protein levels, finding a significant downregulation of both of them at 3-month-old mice. In addition, the downregulation of this molecule was associated with a decrease on acetylation levels of histone H3 in the hippocampus of APP/PS1 mice. Moreover, the p-CREB levels, which are important for memory acquisition at 3 months in APP/PS1 mice, were downregulated. Furthermore, we suggest that early neuroinflammation, especially due to the Tnfα gene increased expression, could also be responsible to this process of memory loss. Given all the previously mentioned results, we propose that an early suitable treatment to prevent the evolution of the disease should include a combination of drugs, including anti-inflammatories, which may decrease glial activation and Tnfα levels, and phosphodiesterase inhibitors that increase cAMP levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet 13:788–794

    Article  PubMed  Google Scholar 

  2. Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50

    Article  CAS  PubMed  Google Scholar 

  3. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532

    Article  PubMed  Google Scholar 

  4. Soejitno A, Tjan A, Purwata TE (2015) Alzheimer’s disease: lessons learned from amyloidocentric clinical trials. CNS Drugs. 29:487–502

    Article  PubMed  Google Scholar 

  5. Alzheimer’s Association (2016) Alzheimer’s disease facts and figures. Alzheimers Dement 12(2016):459–509

    Google Scholar 

  6. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–366

    Article  CAS  PubMed  Google Scholar 

  7. Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J et al (2016) Current and future treatment of amyloid diseases. J Intern Med 280:177–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hampel H, Schneider LS, Giacobini E, Kivipelto M, Sindi S, Dubois B et al (2015) Advances in the therapy of Alzheimer’s disease: targeting amyloid beta and tau and perspectives for the future. Expert Rev Neurother 15:83–105

    Article  CAS  PubMed  Google Scholar 

  9. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang W, Hao J, Liu R, Zhang Z, Lei G, Su C et al (2011) Soluble Aβ levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 222:342–350

    Article  CAS  PubMed  Google Scholar 

  12. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732

    Article  PubMed  Google Scholar 

  14. Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Garatachea N et al (2015) Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging 32:139–147

    Article  PubMed  Google Scholar 

  15. E. Solito, M. Sastre, Microglia function in Alzheimer’s disease, Front. Pharmacol. 10 (2012) 3:14.

  16. M. Sastre, J. Walter, S.M. Gentleman, Interactions between APP secretases and inflammatory mediators, J. Neuroinflammation. 18 (2008) 5:25.

  17. M.T. Heneka, M. Sastre, L. Dumitrescu-Ozimek, I. Dewachter, J. Walter, T. Klockgether, F. Van Leuven, Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V7171] transgenic mice, J. Neuroinflammation. 7 (2005) 2:22.

  18. Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24:167–176

    Article  CAS  PubMed  Google Scholar 

  19. Bedse G, Di Domenico F, Cassano T (2015) Aberrant insulin signaling in Alzheimer's disease: current knowledge. Front Neurosci 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ferreira ST, Clarke JR, Bomfim TR, de Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement 10:S76–S83

    Article  PubMed  Google Scholar 

  21. de Felice FG, Lourenco MV, S.T. (2014) Ferreira, how does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 10:S26–S32

    Article  PubMed  Google Scholar 

  22. Ettcheto M, Petrov D, Pedrós I, Alva N, Carbonell T, Beas-Zarate C et al (2016) Evaluation of neuropathological effects of a high-fat diet in a presymptomatic Alzheimer’s disease stage in APP/PS1 mice. J Alzheimers Dis 54:233–251

    Article  CAS  PubMed  Google Scholar 

  23. de la Monte SM (2017) Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77:47–65

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rouaux C, Loeffler JP, Boutillier AL (2004) Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol 68:1157–1164

    Article  CAS  PubMed  Google Scholar 

  25. Teich AF, Nicholls RE, Puzzo D, Fiorito J, Purgatorio R, Fa M, Arancio O (2015) Synaptic therapy in Alzheimer’s disease: a CREB-centric approach. Neurotherapeutics 12:29–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartolotti N, Segura L, Lazarov O (2016) Diminished CRE-induced plasticity is linked to memory deficits in familial Alzheimer’s disease mice. J Alzheimers Dis 50:477–489

    Article  CAS  PubMed  Google Scholar 

  27. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9

    Article  CAS  PubMed  Google Scholar 

  29. Bartolotti N, Bennett DA, Lazarov O (2016) Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells. Mol Psychiatry 21:1158–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107:22687–22692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruan L, Kang Z, Pei G, Le Y (2009) Amyloid deposition and inflammation in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Curr Alzheimer Res 6:531–540

    Article  CAS  PubMed  Google Scholar 

  32. López-González I, Schlüter A, Aso E, Garcia-Esparcia P, Ansoleaga B, LLorens F (2015) Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 73:319–344

    Article  Google Scholar 

  33. Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O (2004) Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 55:801–814

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Bai M, Xi Y, Hao J, Liu L, Mao N et al (2012) Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med 52:1443–1552

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Bai M, Xi Y, Hao J, Zhang Z, Su C et al (2012) Multiple inflammatory pathways are involved in the development and progression of cognitive deficits in APPswe/PS1dE9 mice. Neurobiol Aging 33:2661–2677

    Article  CAS  PubMed  Google Scholar 

  36. Francis YI, Fà M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Orancio O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 18:131–139

    Article  CAS  PubMed  Google Scholar 

  37. Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S et al (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol 173:1768–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bilkei-Gorzo A (2014) Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther 142:244–257

    Article  CAS  PubMed  Google Scholar 

  39. Puzzo D, Gulisano W, Palmeri A, Arancio O (2015) Rodent models for Alzheimer’s disease drug discovery. Expert Opin Drug Discovery 10:703–711

    Article  CAS  Google Scholar 

  40. Abad S, Camarasa J, Pubill D, Camins A, Escubedo E (2016) Adaptive plasticity in the hippocampus of young mice intermittently exposed to MDMA could be the origin of memory deficits. Mol Neurobiol 53:7271–7283

    Article  CAS  PubMed  Google Scholar 

  41. Abad S, Ramon C, Pubill D, Camarasa J, Camins A, Escubedo E (2016) Adolescent exposure to MDMA induces dopaminergic toxicity in substantia nigra and potentiates the amyloid plaque deposition in the striatum of APPswe/PS1dE9 mice. Biochim Biophys Acta 1862:1815–1826

    Article  CAS  PubMed  Google Scholar 

  42. Pedrós I, Petrov D, Allgaier M, Sureda F, Barroso E et al (2014) Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer’s disease. Biochim Biophys Acta 1842:1556–1566

    Article  PubMed  Google Scholar 

  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  44. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    CAS  PubMed  Google Scholar 

  45. Vitolo OV, Sant'Angelo A, Costanzo V, Battaglia, Arancio O, Shelanski M (2002) Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A 99:13217–13221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. F.M. Laird, H. Cai, A.V. Savonenko, M.H. Farah, K. He, T. Melnikova, et. al., BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions, J Neurosci 25 (2005) 11693–11709.

  47. Kobayashi D, Zeller M, Cole T, Buttini M, McConlogue L, Sinha S et al (2008) BACE1 gene deletion: Impact on behavioral function in a model of Alzheimer’s disease. Neurobiol Aging 29:861–873

    Article  CAS  PubMed  Google Scholar 

  48. Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF (2004) BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41:27–33

    Article  CAS  PubMed  Google Scholar 

  49. Cole SL, Vassar R (2007) The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener 2:22

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oike Y, Hata A, Mamiya T, Kaname T, Noda Y, Suzuki M et al (1999) Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Genet 8:387–396

    Article  CAS  PubMed  Google Scholar 

  51. Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM et al (2011) Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36:1545–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cuadrado-Tejedor M, Garcia-Barroso C, Sánchez-Arias JA, Rabal O, Pérez-González M et al (2016) Sep 21) A first-in-class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer’s disease mice. Neuropsychopharmacology. doi:10.1038/npp.2016

  53. Tong L, Thornton PL, Balazs R, Cotman CW (2001) Beta -amyloid-(1-42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J Biol Chem 276:17301–17306

    Article  CAS  PubMed  Google Scholar 

  54. Habbas S, Santello M, Becker D, Stubbe H, Zappia G, Liaudet N et al (2015) Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163:1730–1741

    Article  CAS  PubMed  Google Scholar 

  55. Estes ML, McAllister AK (2014) Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation. Brain Pathol 24:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McAlpine FE, Lee JK, Harms AS, Ruhn KA, Blurton-Jones M, Hong J, Das P (2009) Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis 34:163–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi JQ, Shen W, Chen J, Wang BR, Zhong LL, Zhu YW et al (2011) Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res 1368:239–247

    Article  CAS  PubMed  Google Scholar 

  58. Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J (2015) Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol 130:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weekman EM, Sudduth TL, Abner EL, Popa GJ, Mendenhall MD et al (2014) Transition from an M1 to a mixed neuroinflammatory phenotype increases amyloid deposition in APP/PS1 transgenic mice. J Neuroinflammation 11:127

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yan R, Fan Q, Zhou J, Vassar R (2016) Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer’s disease. Neurosci Biobehav Rev 65:326–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lundgren JL, Ahmed S, Schedin-Weiss S, Gouras GK, Winblad B et al (2015) ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem 135:606–615

    Article  CAS  PubMed  Google Scholar 

  62. Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R (2013) The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 126:329–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen Y, Huang X, Zhang YW, Rockenstein E, Bu G et al (2012) Alzheimer’s β-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of β-amyloid. J Neurosci 32:11390–11395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lau CG, Takeuchi K, Rodenas-Ruano A, Takayasu Y, Murphy J et al (2009) Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem Soc Trans 37:1369–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ulas J, Cotman CW (1997) Decreased expression of N-methyl-D-aspartate receptor 1 messenger RNA in select regions of Alzheimer brain. Neuroscience 79:973–982

    Article  CAS  PubMed  Google Scholar 

  66. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    Article  CAS  PubMed  Google Scholar 

  67. Lau CG, Saha S, Faris R, Russek SJ (2004) Up-regulation of NMDAR1 subunit gene expression in cortical neurons via a PKA-dependent pathway. J Neurochem 88:564–575

    Article  CAS  PubMed  Google Scholar 

  68. Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114:1624–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation SAF-2016-33307, PI2016/01, CB06/05/0024 (CIBERNED) and the European Regional Development Funds. Research team from UB and URV belongs to 2014SGR-525 from Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Camins.

Additional information

Jaume Folch and Antoni Camins are senior co-authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettcheto, M., Abad, S., Petrov, D. et al. Early Preclinical Changes in Hippocampal CREB-Binding Protein Expression in a Mouse Model of Familial Alzheimer’s Disease. Mol Neurobiol 55, 4885–4895 (2018). https://doi.org/10.1007/s12035-017-0690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0690-4

Keywords

Navigation