Skip to main content
Log in

Adaptive Plasticity in the Hippocampus of Young Mice Intermittently Exposed to MDMA Could Be the Origin of Memory Deficits

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

(±)3,4-Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. This study was designed to evaluate whether MDMA exposure affects their recognition memory and hippocampal expression of plasticity markers. Mice were administered with increasing doses of MDMA once per week for 8 weeks (three times in 1 day, every 3 h) and killed 2 weeks (2w) or 3 months (3m) later. The treatment did not modify hippocampal tryptophan hydroxylase 2, a serotonergic indicator, but induced an initial reduction in dopaminergic markers in substantia nigra, which remained stable for at least 3 months. In parallel, MDMA produced a decrease in dopamine (DA) levels in the striatum at 2w, which were restored 3 months later, suggesting dopaminergic terminal regeneration (sprouting phenomenon). Moreover, recognition memory was assessed using the object recognition test. Young (2w) and mature (3m) adult mice exhibited impaired memory after 24-h but not after just 1-h retention interval. Two weeks after the treatment, animals showed constant levels of CREB but an increase in its phosphorylated form and in c-Fos expression. Brain-derived neurotrophic factor (BDNF) and especially Arc overexpression was sustained and long-lasting. We cannot rule out the absence of MDMA injury in the hippocampus being due to the generation of BDNF. The levels of NMDAR2B, PSD-95, and synaptophysin were unaffected. In conclusion, the young mice exposed to MDMA showed increased expression of early key markers of plasticity, which sometimes remained for 3 months, and suggests hippocampal maladaptive plasticity that could explain memory deficits evidenced here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pubill D, Canudas AM, Pallàs M, Camins A, Camarasa J, Escubedo E (2003) Different glial response to methamphetamine- and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedeberg’s Arch Pharmacol 367:490–499

    Article  CAS  Google Scholar 

  2. Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The Pharmacology and Clinical Pharmacology of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  3. Logan BJ, Laverty R, Sanderson WD, Yee YB (1988) Differences between rats and mice in MDMA (methylenedioxymethylamphetamine) neurotoxicity. Eur J Pharmacol 152:227–234

    Article  CAS  PubMed  Google Scholar 

  4. Chipana C, Camarasa J, Pubill D, Escubedo E (2006) Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors. Neuropharmacology 51:885–895. doi:10.1016/j.neuropharm.2006.05.032

    Article  CAS  PubMed  Google Scholar 

  5. O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    PubMed  Google Scholar 

  6. Colado MI, Camarero J, Mechan AO, Sanchez V, Esteban B, Elliott JM, Green AR (2001) A study of the mechanisms involved in the neurotoxic action of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on dopamine neurones in mouse brain. Br J Pharmacol 134:1711–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Shea E, Esteban B, Camarero J, Green AR, Colado MI (2001) Effect of GBR 12909 and fluoxetine on the acute and long term changes induced by MDMA (“ecstasy”) on the 5-HT and dopamine concentrations in mouse brain. Neuropharmacology 40:65–74

    Article  PubMed  Google Scholar 

  8. Able JA, Gudelsky GA, Vorhees CV, Williams MT (2006) 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatry 59:1219–1226

    Article  CAS  PubMed  Google Scholar 

  9. Sprague JE, Preston AS, Leifheit M, Woodside B (2003) Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning. Physiol Behav 79:281–287

    Article  CAS  PubMed  Google Scholar 

  10. Vorhees CV, Reed TM, Skelton MR, Williams MT (2004) Exposure to 3,4-methylenedioxymethamphetamine (MDMA) on postnatal days 11–20 induces reference but not working memory deficits in the Morris water maze in rats: implications of prior learning. Int J Dev Neurosci Off J Int Soc Dev Neurosci 22:247–259

    Article  CAS  Google Scholar 

  11. Morley KC, Gallate JE, Hunt GE, Mallet PE, McGregor IS (2001) Increased anxiety and impaired memory in rats 3 months after administration of 3,4-methylenedioxymethamphetamine (“ecstasy”). Eur J Pharmacol 433:91–99

    Article  CAS  PubMed  Google Scholar 

  12. Salzmann J, Marie-claire C, Guen SL, Roques BP, Noble F (2003) Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. Br J Pharmacol 140:831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamburini I, Blandini F, Gesi M, Frenzilli G, Nigro M, Giusiani M, Paparelli A, Fornai F (2006) MDMA induces caspase-3 activation in the limbic system but not in striatum. Ann N Y Acad Sci 1074:377–381

    Article  CAS  PubMed  Google Scholar 

  14. Busceti CL, Biagioni F, Riozzi B, Battaglia G, Storto M, Cinque C, Molinaro G, Gradini R et al (2008) Enhanced tau phosphorylation in the hippocampus of mice treated with 3,4-methylenedioxymethamphetamine (“Ecstasy”). J Neurosci 28:3234–3245

    Article  CAS  PubMed  Google Scholar 

  15. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Supplement 1):33–46

    Article  CAS  PubMed  Google Scholar 

  16. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

  17. Ball KT, Wellman CL, Fortenberry E, Rebec GV (2009) Sensitizing regimens of (+/−)3, 4-methylenedioxymethamphetamine (ecstasy) elicit enduring and differential structural alterations in the brain motive circuit of the rat. Neuroscience 160:264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes C (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci Off J Soc Neurosci 20:3993–4001

    CAS  Google Scholar 

  19. Kodama M, Akiyama K, Ujike H, Shimizu Y, Tanaka Y, Kuroda S (1998) A robust increase in expression of arc gene, an effector immediate early gene, in the rat brain after acute and chronic methamphetamine administration. Brain Res 796:273–283

    Article  CAS  PubMed  Google Scholar 

  20. Pei Q, Lewis L, Sprakes ME, Jones EJ, Grahame-Smith DG, Zetterström TS (2000) Serotonergic regulation of mRNA expression of Arc, an immediate early gene selectively localized at neuronal dendrites. Neuropharmacology 39:463–470

    Article  CAS  PubMed  Google Scholar 

  21. Steward O, Worley PF (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30:227–240

    Article  CAS  PubMed  Google Scholar 

  22. Kalivas PW, O’Brien C (2007) Drug Addiction as a Pathology of Staged Neuroplasticity. Neuropsychopharmacology 33:166–180

    Article  CAS  PubMed  Google Scholar 

  23. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125. doi:10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  24. Broening HW, Morford LL, Inman-Wood SL, Fukumura M, Vorhees CV (2001) 3,4-methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci Off J Soc Neurosci 21:3228–3235

    CAS  Google Scholar 

  25. Hammersley R, Ditton J, Smith I, Short E (1999) Patterns of ecstasy use by drug users. Br J Criminol 39:625–647

    Article  Google Scholar 

  26. Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(+/−)MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol Biochem Behav 32:835–840

    Article  CAS  PubMed  Google Scholar 

  27. Abad S, Fole A, del Olmo N, Pubill D, Pallàs M, Junyent F, Camarasa J, Camins A et al (2014) MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density. Psychopharmacology (Berlin) 231:863–874

    Article  CAS  Google Scholar 

  28. Paxinos G, Franklin KBJ (2001) Mouse brain in stereotaxic coordinates

  29. Pedrós I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas-Zarate C, Auladell C, Pallàs M et al (2014) Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer’s disease. Biochim Biophys Acta 1842:1556–1566

    Article  CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods San Diego Calif 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  31. Bodnoff SR, Humphreys AG, Lehman JC, Diamond DM, Rose GM, Meaney MJ (1995) Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J Neurosci Off J Soc Neurosci 15:61–69

    CAS  Google Scholar 

  32. Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479:23–40

    Article  CAS  PubMed  Google Scholar 

  33. Nash JF, Roth BL, Brodkin JD, Nichols DE, Gudelsky GA (1994) Effect of the R(−) and S(+) isomers of MDA and MDMA on phosphatidyl inositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neurosci Lett 177:111–115

    Article  CAS  PubMed  Google Scholar 

  34. Battaglia G, Yeh SY, De Souza EB (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29:269–274

    Article  CAS  PubMed  Google Scholar 

  35. Scanzello CR, Hatzidimitriou G, Martello AL, Katz JL, Ricaurte GA (1993) Serotonergic recovery after (+/−)3,4-(methylenedioxy) methamphetamine injury: observations in rats. J Pharmacol Exp Ther 264:1484–1491

    CAS  PubMed  Google Scholar 

  36. Fischer C, Hatzidimitriou G, Wlos J, Katz J, Ricaurte G (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/−)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurosci Off J Soc Neurosci 15:5476–5485

    CAS  Google Scholar 

  37. Costa G, Frau L, Wardas J, Pinna A, Plumitallo A, Morelli M (2013) MPTP-induced dopamine neuron degeneration and glia activation is potentiated in MDMA-pretreated mice. Mov Disord 28:1957–1965

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt CJ, Abbate GM, Black CK, Taylor VL (1990) Selective 5-hydroxytryptamine2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 255:478–483

    CAS  PubMed  Google Scholar 

  39. Granado N, O’Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107:1102–1112

    CAS  PubMed  Google Scholar 

  40. Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82:26–34

    Article  PubMed  Google Scholar 

  41. Schenk S (2011) MDMA (“ecstasy”) abuse as an example of dopamine neuroplasticity. Neurosci Biobehav Rev 35:1203–1218

    Article  CAS  PubMed  Google Scholar 

  42. Williams MT, Skelton MR, Longacre ID, Huggins KN, Maple AM, Vorhees CV, Brown RW (2014) Neuronal reorganization in adult rats neonatally exposed to (±)-3,4-methylenedioxymethamphetamine. Toxicol Rep 1:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Nieuwenhuijzen PS, Kashem MA, Matsumoto I, Hunt GE, McGregor IS (2010) A long hangover from party drugs: residual proteomic changes in the hippocampus of rats 8 weeks after γ-hydroxybutyrate (GHB), 3,4-methylenedioxymethamphetamine (MDMA) or their combination. Neurochem Int 56:871–877

    Article  CAS  PubMed  Google Scholar 

  44. Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148. doi:10.1146/annurev.neuro.21.1.127

    Article  CAS  PubMed  Google Scholar 

  45. Ying S-W, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-Derived Neurotrophic Factor Induces Long-Term Potentiation in Intact Adult Hippocampus: Requirement for ERK Activation Coupled to CREB and Upregulation of Arc Synthesis. J Neurosci 22:1532–1540

    CAS  PubMed  Google Scholar 

  46. Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M et al (2009) The Arc of synaptic memory. Exp Brain Res 200:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  47. Huang F, Chotiner JK, Steward O (2007) Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J Neurosci Off J Soc Neurosci 27:9054–9067. doi:10.1523/JNEUROSCI.2410-07.2007

    Article  CAS  Google Scholar 

  48. Messaoudi E, Kanhema T, Soulé J, Tiron A, Dagyte G, da Silva B, Bramham CR (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27:10445–10455

    Article  CAS  PubMed  Google Scholar 

  49. Farris S, Lewandowski G, Cox CD, Steward O (2014) Selective localization of arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation. J Neurosci Off J Soc Neurosci 34:4481–4493

    Article  CAS  Google Scholar 

  50. Fosnaugh JS, Bhat RV, Yamagata K, Yamagata K, Worley PF, Baraban JM (1995) Activation of arc, a putative “effector” immediate early gene, by cocaine in rat brain. J Neurochem 64:2377–2380

    Article  CAS  PubMed  Google Scholar 

  51. Freeman WM, Brebner K, Lynch WJ, Patel KM, Robertson DJ, Roberts DC, Vrana KE (2002) Changes in rat frontal cortex gene expression following chronic cocaine. Brain Res Mol Brain Res 104:11–20

    Article  CAS  PubMed  Google Scholar 

  52. Caffino L, Giannotti G, Malpighi C, Racagni G, Filip M, Fumagalli F (2014) Long-term abstinence from developmental cocaine exposure alters Arc/Arg3.1 modulation in the rat medial prefrontal cortex. Neurotox Res 26:299–306

    Article  CAS  PubMed  Google Scholar 

  53. Huang CC, Yeh CM, Wu MY, Chang AY, Chan JY, Chan SH, Hsu KS (2011) Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens. J Neurosci 31:4194–4203

    Article  CAS  PubMed  Google Scholar 

  54. Martínez-Turrillas R, Moyano S, Del Río J, Frechilla D (2006) Differential effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on BDNF mRNA expression in rat frontal cortex and hippocampus. Neurosci Lett 402:126–130

    Article  CAS  PubMed  Google Scholar 

  55. Lindefors N, Ballarin M, Ernfors P, Falkenberg T, Persson H (1992) Stimulation of glutamate receptors increases expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Ann N Y Acad Sci 648:296–299

    Article  CAS  PubMed  Google Scholar 

  56. Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci Off J Soc Neurosci 20:8–21

    CAS  Google Scholar 

  57. Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci Off J Soc Neurosci 12:4793–4799

    CAS  Google Scholar 

  58. Sano K, Nanba H, Tabuchi A, Tsuchiya T, Tsuda M (1996) BDNF gene can Be activated by Ca2+ signals without involvement of de novo AP-1 synthesis. Biochem Biophys Res Commun 229:788–793. doi:10.1006/bbrc.1996.1881

    Article  CAS  PubMed  Google Scholar 

  59. Abad S, Junyent F, Auladell C, Pubill D, Pallàs M, Camarasa J, Escubedo E, Camins A (2014) 3,4-Methylenedioxymethamphetamine enhances kainic acid convulsive susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 54:231–242. doi:10.1016/j.pnpbp.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  60. Steward O, Schuman EM (2001) Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24:299–325. doi:10.1146/annurev.neuro.24.1.299

    Article  CAS  PubMed  Google Scholar 

  61. Fumagalli F, Moro F, Caffino L, Orrù A, Cassina C, Giannotti G, Di Clemente A, Racagni G et al (2013) Region-specific effects on BDNF expression after contingent or non-contingent cocaine i.v. self-administration in rats. Int J Neuropsychopharmacol 16:913–918. doi:10.1017/S146114571200096X

    Article  CAS  PubMed  Google Scholar 

  62. Adori C, Andó RD, Ferrington L, Szekeres M, Vas S, Kelly PA, Hunyady L, Bagdy G (2010) Elevated BDNF protein level in cortex but not in hippocampus of MDMA-treated Dark Agouti rats: a potential link to the long-term recovery of serotonergic axons. Neurosci Lett 478:56–60. doi:10.1016/j.neulet.2010.04.061

    Article  CAS  PubMed  Google Scholar 

  63. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618

    Article  CAS  PubMed  Google Scholar 

  64. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572. doi:10.1038/nrn2515

    Article  CAS  PubMed  Google Scholar 

  65. Kindlundh-Högberg AMS, Blomqvist A, Malki R, Schiöth HB (2008) Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats. BMC Neurosci 9:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank J.A. Paulsen-Medalen for technical assistance, and they also acknowledge the Language Advisory Service of the University of Barcelona for editing the language of the manuscript. Sonia Abad received a fellowship from the Institut de Biomedicina (IBUB, University of Barcelona). Funding for this study was provided by the Plan Nacional sobre Drogas (2012I102) and the Ministerio de Economía y Competitividad (SAF 2013-46135-P) and by the Generalitat de Catalunya (2014SGR525). AC belongs to 2014SGR525, and JC, DP, and EE to 2014SGR1081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Escubedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abad, S., Camarasa, J., Pubill, D. et al. Adaptive Plasticity in the Hippocampus of Young Mice Intermittently Exposed to MDMA Could Be the Origin of Memory Deficits. Mol Neurobiol 53, 7271–7283 (2016). https://doi.org/10.1007/s12035-015-9618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9618-z

Keywords

Navigation