Skip to main content
Log in

Translesion Synthesis DNA Polymerase Kappa Is Indispensable for DNA Repair Synthesis in Cisplatin Exposed Dorsal Root Ganglion Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the peripheral nervous system (PNS) in the absence of tight blood barrier, neurons are at increased risk of DNA damage, yet the question of how effectively PNS neurons manage DNA damage remains largely unanswered. Genotoxins in systemic circulation include chemotherapeutic drugs that reach peripheral neurons and damage their DNA. Because neurotoxicity of platinum-based class of chemotherapeutic drugs has been implicated in PNS neuropathies, we utilized an in vitro model of Dorsal Root Ganglia (DRGs) to investigate how peripheral neurons respond to cisplatin that forms intra- and interstrand crosslinks with their DNA. Our data revealed strong transcriptional upregulation of the translesion synthesis DNA polymerase kappa (Pol κ), while expression of other DNA polymerases remained unchanged. DNA Pol κ is involved in bypass synthesis of diverse DNA lesions and considered a vital player in cellular survival under injurious conditions. To assess the impact of Pol κ deficiency on cisplatin-exposed DRG neurons, Pol κ levels were reduced using siRNA. Pol κ targeting siRNA diminished the cisplatin-induced nuclear Pol κ immunoreactivity in DRG neurons and decreased the extent of cisplatin-induced DNA repair synthesis, as reflected in reduced incorporation of thymidine analog into nuclear DNA. Moreover, Pol κ depletion exacerbated global transcriptional suppression induced by cisplatin in DRG neurons. Collectively, these findings provide the first evidence for critical role of Pol κ in DNA damage response in the nervous system and call attention to implications of polymorphisms that modify Pol κ activity, on maintenance of genomic integrity and neuronal function in exogenously challenged PNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Pol κ:

DNA polymerase kappa

BER:

Base excision repair

DRG:

Dorsal root ganglion

NER:

Nucleotide excision repair

PNS:

Peripheral nervous system

TLS:

Translesion synthesis

References

  1. Majithia N, Loprinzi CL, Smith TJ (2016) New practical approaches to chemotherapy-induced neuropathic pain: prevention, assessment, and treatment. Oncology (Williston Park) 30(11):1020–1029

    Google Scholar 

  2. Dzagnidze A, Katsarava Z, Makhalova J, Liedert B, Yoon MS, Kaube H, Limmroth V, Thomale J (2007) Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J Neurosci 27(35):9451–9457. doi:10.1523/JNEUROSCI.0523-07.2007

    Article  CAS  PubMed  Google Scholar 

  3. Xiao WH, Zheng H, Bennett GJ (2012) Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 203:194–206. doi:10.1016/j.neuroscience.2011.12.023

    Article  CAS  PubMed  Google Scholar 

  4. Eastman A (1987) The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther 34(2):155–166

    Article  CAS  PubMed  Google Scholar 

  5. Bavoux C, Hoffmann JS, Cazaux C (2005) Adaptation to DNA damage and stimulation of genetic instability: the double-edged sword mammalian DNA polymerase kappa. Biochimie 87(7):637–646. doi:10.1016/j.biochi.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  6. Bavoux C, Leopoldino AM, Bergoglio V, OW J, Ogi T, Bieth A, Judde JG, Pena SD et al (2005) Up-regulation of the error-prone DNA polymerase {kappa} promotes pleiotropic genetic alterations and tumorigenesis. Cancer Res 65(1):325–330

    CAS  PubMed  Google Scholar 

  7. Gregory MT, Park GY, Johnstone TC, Lee YS, Yang W, Lippard SJ (2014) Structural and mechanistic studies of polymerase eta bypass of phenanthriplatin DNA damage. Proc Natl Acad Sci U S A 111(25):9133–9138. doi:10.1073/pnas.1405739111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sale JE, Lehmann AR, Woodgate R (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13(3):141–152. doi:10.1038/nrm3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73(1):134–154. doi:10.1128/MMBR.00034-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Yang Y, Tang TS, Zhang H, Wang Z, Friedberg E, Yang W, Guo C (2014) Variants of mouse DNA polymerase kappa reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct. Proc Natl Acad Sci U S A 111(5):1789–1794. doi:10.1073/pnas.1324168111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogi T, Shinkai Y, Tanaka K, Ohmori H (2002) Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci U S A 99(24):15548–15553. doi:10.1073/pnas.222377899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singer WD, Osimiri LC, Friedberg EC (2013) Increased dietary cholesterol promotes enhanced mutagenesis in DNA polymerase kappa-deficient mice. DNA Repair (Amst) 12(10):817–823. doi:10.1016/j.dnarep.2013.07.010

    Article  CAS  Google Scholar 

  13. Stancel JN, McDaniel LD, Velasco S, Richardson J, Guo C, Friedberg EC (2009) Polk mutant mice have a spontaneous mutator phenotype. DNA Repair (Amst) 8(12):1355–1362. doi:10.1016/j.dnarep.2009.09.003

    Article  CAS  Google Scholar 

  14. Zhang X, Lv L, Chen Q, Yuan F, Zhang T, Yang Y, Zhang H, Wang Y et al (2013) Mouse DNA polymerase kappa has a functional role in the repair of DNA strand breaks. DNA Repair (Amst) 12(5):377–388. doi:10.1016/j.dnarep.2013.02.008

    Article  CAS  Google Scholar 

  15. Maddukuri L, Ketkar A, Eddy S, Zafar MK, Eoff RL (2014) The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa. Nucleic Acids Res 42(19):12027–12040. doi:10.1093/nar/gku913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ling H, Boudsocq F, Woodgate R, Yang W (2004) Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts. Mol Cell 13(5):751–762

    Article  CAS  PubMed  Google Scholar 

  17. Ogi T, Lehmann AR (2006) The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat Cell Biol 8(6):640–642. doi:10.1038/ncb1417

    Article  CAS  PubMed  Google Scholar 

  18. Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A et al (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 37(5):714–727. doi:10.1016/j.molcel.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  19. Sancar A (1995) Excision repair in mammalian cells. J Biol Chem 270(27):15915–15918

    Article  CAS  PubMed  Google Scholar 

  20. Enoiu M, Jiricny J, Scharer OD (2012) Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res 40(18):8953–8964. doi:10.1093/nar/gks670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams HL, Gottesman ME, Gautier J (2012) Replication-independent repair of DNA interstrand crosslinks. Mol Cell 47(1):140–147. doi:10.1016/j.molcel.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ogi T, Kannouche P, Lehmann AR (2005) Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J Cell Sci 118(Pt 1):129–136. doi:10.1242/jcs.01603

    Article  CAS  PubMed  Google Scholar 

  23. Lehmann AR (2006) New functions for Y family polymerases. Mol Cell 24(4):493–495. doi:10.1016/j.molcel.2006.10.021

    Article  CAS  PubMed  Google Scholar 

  24. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176. doi:10.1038/nature05453

    Article  CAS  PubMed  Google Scholar 

  25. Englander EW (2008) Brain capacity for repair of oxidatively damaged DNA and preservation of neuronal function. Mech Ageing Dev 129(7–8):475–482. doi:10.1016/j.mad.2008.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fernyhough P (2015) Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep 15(11):89. doi:10.1007/s11892-015-0671-9

    Article  PubMed  Google Scholar 

  27. Huang LY, Neher E (1996) Ca(2+)-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 17(1):135–145

    Article  CAS  PubMed  Google Scholar 

  28. Lindsay RM (1988) Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci 8(7):2394–2405

    CAS  PubMed  Google Scholar 

  29. Malin SA, Davis BM, Molliver DC (2007) Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat Protoc 2(1):152–160. doi:10.1038/nprot.2006.461

    Article  CAS  PubMed  Google Scholar 

  30. Zhuo M, Gorgun MF, Englander EW (2016) Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise. Free Radic Biol Med 99:20–31. doi:10.1016/j.freeradbiomed.2016.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gorgun MF, Zhuo M, Englander EW (2016) Cisplatin toxicity in dorsal root ganglion neurons is relieved by meclizine via diminution of mitochondrial compromise and improved clearance of DNA damage. Mol Neurobiol. doi:10.1007/s12035-016-0273-9

    PubMed  Google Scholar 

  32. Kelley MR, Jiang Y, Guo C, Reed A, Meng H, Vasko MR (2014) Role of the DNA base excision repair protein, APE1 in cisplatin, oxaliplatin, or carboplatin induced sensory neuropathy. PLoS One 9(9):e106485. doi:10.1371/journal.pone.0106485

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  34. Jao CY, Salic A (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci U S A 105(41):15779–15784. doi:10.1073/pnas.0808480105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakazawa Y, Yamashita S, Lehmann AR, Ogi T (2010) A semi-automated non-radioactive system for measuring recovery of RNA synthesis and unscheduled DNA synthesis using ethynyluracil derivatives. DNA Repair (Amst) 9(5):506–516. doi:10.1016/j.dnarep.2010.01.015

    Article  CAS  Google Scholar 

  36. Pallis M, Burrows F, Whittall A, Boddy N, Seedhouse C, Russell N (2013) Efficacy of RNA polymerase II inhibitors in targeting dormant leukaemia cells. BMC Pharmacol Toxicol 14:32. doi:10.1186/2050-6511-14-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226(4673):466–468

    Article  CAS  PubMed  Google Scholar 

  38. Heintz NH, Hamlin JL (1983) In vivo effects of cytosine arabinoside on deoxyribonucleic acid replication in Chinese hamster ovary cells. 1. Resolution of differential effects on mitochondrial and nuclear deoxyribonucleic acid synthesis. Biochemistry 22(15):3552–3557

    Article  CAS  PubMed  Google Scholar 

  39. Morita EH, Ohkubo T, Kuraoka I, Shirakawa M, Tanaka K, Morikawa K (1996) Implications of the zinc-finger motif found in the DNA-binding domain of the human XPA protein. Genes Cells 1(5):437–442

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Bernauer AM, Yingling CM, Belinsky SA (2012) HIF1alpha regulated expression of XPA contributes to cisplatin resistance in lung cancer. Carcinogenesis 33(6):1187–1192. doi:10.1093/carcin/bgs142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Revet I, Feeney L, Bruguera S, Wilson W, Dong TK, Oh DH, Dankort D, Cleaver JE (2011) Functional relevance of the histone gammaH2Ax in the response to DNA damaging agents. Proc Natl Acad Sci U S A 108(21):8663–8667. doi:10.1073/pnas.1105866108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lukas J, Lukas C, Bartek J (2011) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13(10):1161–1169. doi:10.1038/ncb2344

    Article  CAS  PubMed  Google Scholar 

  43. Roy U, Scharer OD (2016) Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. DNA Repair (Amst) 44:33–41. doi:10.1016/j.dnarep.2016.05.004

    Article  CAS  Google Scholar 

  44. Guo C, Tang TS, Bienko M, Dikic I, Friedberg EC (2008) Requirements for the interaction of mouse Polkappa with ubiquitin and its biological significance. J Biol Chem 283(8):4658–4664. doi:10.1074/jbc.M709275200

    Article  CAS  PubMed  Google Scholar 

  45. Englander EW (2013) DNA damage response in peripheral nervous system: coping with cancer therapy-induced DNA lesions. DNA Repair (Amst) 12(8):685–690. doi:10.1016/j.dnarep.2013.04.020

    Article  CAS  Google Scholar 

  46. Goodman MF, Woodgate R (2013) Translesion DNA polymerases. Cold Spring Harb Perspect Biol 5(10):a010363. doi:10.1101/cshperspect.a010363

    Article  PubMed  PubMed Central  Google Scholar 

  47. McIntyre J, Woodgate R (2015) Regulation of translesion DNA synthesis: posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 29:166–179. doi:10.1016/j.dnarep.2015.02.011

    Article  CAS  Google Scholar 

  48. Gerlach VL, Aravind L, Gotway G, Schultz RA, Koonin EV, Friedberg EC (1999) Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc Natl Acad Sci U S A 96(21):11922–11927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW et al (2001) The Y-family of DNA polymerases. Mol Cell 8(1):7–8

    Article  CAS  PubMed  Google Scholar 

  50. Velasco-Miguel S, Richardson JA, Gerlach VL, Lai WC, Gao T, Russell LD, Hladik CL, White CL et al (2003) Constitutive and regulated expression of the mouse Dinb (Polkappa) gene encoding DNA polymerase kappa. DNA Repair (Amst) 2(1):91–106

    Article  CAS  Google Scholar 

  51. Takeiri A, Wada NA, Motoyama S, Matsuzaki K, Tateishi H, Matsumoto K, Niimi N, Sassa A et al (2014) In vivo evidence that DNA polymerase kappa is responsible for error-free bypass across DNA cross-links induced by mitomycin C. DNA Repair (Amst) 24:113–121. doi:10.1016/j.dnarep.2014.09.002

    Article  CAS  Google Scholar 

  52. Yuan B, You C, Andersen N, Jiang Y, Moriya M, O’Connor TR, Wang Y (2011) The roles of DNA polymerases kappa and iota in the error-free bypass of N2-carboxyalkyl-2′-deoxyguanosine lesions in mammalian cells. J Biol Chem 286(20):17503–17511. doi:10.1074/jbc.M111.232835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jha V, Ling H (2016) Structural basis of accurate replication beyond a bulky major benzo[a]pyrene adduct by human DNA polymerase kappa. DNA Repair (Amst) 49:43–50. doi:10.1016/j.dnarep.2016.11.001

  54. Hile SE, Wang X, Lee MY, Eckert KA (2012) Beyond translesion synthesis: polymerase kappa fidelity as a potential determinant of microsatellite stability. Nucleic Acids Res 40(4):1636–1647. doi:10.1093/nar/gkr889

    Article  CAS  PubMed  Google Scholar 

  55. Boyer AS, Grgurevic S, Cazaux C, Hoffmann JS (2013) The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J Mol Biol 425(23):4767–4781. doi:10.1016/j.jmb.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  56. Pillaire MJ, Betous R, Hoffmann JS (2014) Role of DNA polymerase kappa in the maintenance of genomic stability. Mol Cell Oncol 1(1):e29902. doi:10.4161/mco.29902

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A, Nair DT, Prakash S, Prakash L et al (2007) Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 25(4):601–614. doi:10.1016/j.molcel.2007.01.018

    Article  CAS  PubMed  Google Scholar 

  58. Okada T, Sonoda E, Yamashita YM, Koyoshi S, Tateishi S, Yamaizumi M, Takata M, Ogawa O et al (2002) Involvement of vertebrate polkappa in Rad18-independent postreplication repair of UV damage. J Biol Chem 277(50):48690–48695. doi:10.1074/jbc.M207957200

    Article  CAS  PubMed  Google Scholar 

  59. Shachar S, Ziv O, Avkin S, Adar S, Wittschieben J, Reissner T, Chaney S, Friedberg EC et al (2009) Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. EMBO J 28(4):383–393. doi:10.1038/emboj.2008.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sugasawa K (2016) Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst) 44:110–117. doi:10.1016/j.dnarep.2016.05.015

    Article  CAS  Google Scholar 

  61. Kang TH, Reardon JT, Sancar A (2011) Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein. Nucleic Acids Res 39(8):3176–3187. doi:10.1093/nar/gkq1318

    Article  CAS  PubMed  Google Scholar 

  62. Coste F, Malinge JM, Serre L, Shepard W, Roth M, Leng M, Zelwer C (1999) Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 A resolution: hydration at the platinated site. Nucleic Acids Res 27(8):1837–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vasquez KM, Christensen J, Li L, Finch RA, Glazer PM (2002) Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A 99(9):5848–5853. doi:10.1073/pnas.082193799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, Giglia-Mari G, Clarkson SG et al (2009) Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 28(8):1111–1120. doi:10.1038/emboj.2009.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yan F, Liu JJ, Ip V, Jamieson SM, McKeage MJ (2015) Role of platinum DNA damage-induced transcriptional inhibition in chemotherapy-induced neuronal atrophy and peripheral neurotoxicity. J Neurochem 135(6):1099–1112

    Article  CAS  PubMed  Google Scholar 

  66. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107(5):1387–1407. doi:10.1021/cr068207j

    Article  CAS  PubMed  Google Scholar 

  67. Todd RC, Lippard SJ (2009) Inhibition of transcription by platinum antitumor compounds. Metallomics 1(4):280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jimenez-Andrade JM, Herrera MB, Ghilardi JR, Vardanyan M, Melemedjian OK, Mantyh PW (2008) Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: implications for chemical-induced peripheral sensory neuropathies. Mol Pain 4:10. doi:10.1186/1744-8069-4-10

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weerasuriya A, Mizisin AP (2011) The blood-nerve barrier: structure and functional significance. Methods Mol Biol 686:149–173. doi:10.1007/978-1-60761-938-3_6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (ES014613) and Shriners Hospitals for Children (86700) and Surgery Department at UTMB to EWE. We thank Steve Schuenke and Eileen Figueroa for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ella W. Englander.

Ethics declarations

Conflict of Interest

Authors declare no conflicts of interest.

Additional information

Ming Zhuo and Murat F. Gorgun are the co-first authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, M., Gorgun, M.F. & Englander, E.W. Translesion Synthesis DNA Polymerase Kappa Is Indispensable for DNA Repair Synthesis in Cisplatin Exposed Dorsal Root Ganglion Neurons. Mol Neurobiol 55, 2506–2515 (2018). https://doi.org/10.1007/s12035-017-0507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0507-5

Keywords

Navigation