Skip to main content

Advertisement

Log in

Mitochondrial Dysfunction in Diabetic Neuropathy: a Series of Unfortunate Metabolic Events

  • Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic neuropathy is a dying back neurodegenerative disease of the peripheral nervous system where mitochondrial dysfunction has been implicated as an etiological factor. Diabetes (type 1 or type 2) invokes an elevation of intracellular glucose concentration simultaneously with impaired growth factor support by insulin, and this dual alteration triggers a maladaptation in metabolism of adult sensory neurons. The energy sensing pathway comprising the AMP-activated protein kinase (AMPK)/sirtuin (SIRT)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) signaling axis is the target of these damaging changes in nutrient levels, e.g., induction of nutrient stress, and loss of insulin-dependent growth factor support and instigates an aberrant metabolic phenotype characterized by a suppression of mitochondrial oxidative phosphorylation and shift to anaerobic glycolysis. There is discussion of how this loss of mitochondrial function and transition to overreliance on glycolysis contributes to the diminishment of collateral sprouting and axon regeneration in diabetic neuropathy in the context of the highly energy-consuming nerve growth cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Diamond J, Holmes M, Coughlin M. Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci. 1992;12:1454–66.

    CAS  PubMed  Google Scholar 

  2. Diamond J, Foerster A, Holmes M, Coughlin M. Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF. J Neurosci. 1992;12:1467–76.

    CAS  PubMed  Google Scholar 

  3. Diamond J, Coughlin M, Macintyre L, Holmes M, Visheau B. Evidence that endogenous beta nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats. Proc Natl Acad Sci U S A. 1987;84:6596–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lindfors PH, Voikar V, Rossi J, Airaksinen MS. Deficient nonpeptidergic epidermis innervation and reduced inflammatory pain in glial cell line-derived neurotrophic factor family receptor alpha2 knock-out mice. J Neurosci. 2006;26:1953–60.

    Article  CAS  PubMed  Google Scholar 

  5. Albers KM, Davis BM. The skin as a neurotrophic organ. Neuroscientist. 2007;13:371–82.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor AM, Ribeiro-da-Silva A. GDNF levels in the lower lip skin in a rat model of trigeminal neuropathic pain: implications for nonpeptidergic fiber reinnervation and parasympathetic sprouting. Pain. 2011;152:1502–10.

    Article  CAS  PubMed  Google Scholar 

  7. Orfanos CE, Mahrle G. Ultrastructure and cytochemistry of human cutaneous nerves. With special reference to the ultrastructural localization of the specific and nonspecific cholinesterases in human skin. J Invest Dermatol. 1973;61:108–20.

    Article  CAS  PubMed  Google Scholar 

  8. Breathnach AS. Electron microscopy of cutaneous nerves and receptors. J Invest Dermatol. 1977;69:8–26.

    Article  CAS  PubMed  Google Scholar 

  9. Ribeiro-da-Silva A, Kenigsberg RL, Cuello AC. Light and electron microscopic distribution of nerve growth factor receptor-like immunoreactivity in the skin of the rat lower lip. Neuroscience. 1991;43:631–46.

    Article  CAS  PubMed  Google Scholar 

  10. Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C. Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci. 2011;33:1667–76.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Yagihashi S. Pathology and pathogenetic mechanisms of diabetic neuropathy. Diabetes Metab Rev. 1996;11:193–225.

    Article  Google Scholar 

  12. Malik RA, Tesfaye S, Newrick PG, Walker D, Rajbhandari SM, Siddique I, et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia. 2005;48:578–85.

    Article  CAS  PubMed  Google Scholar 

  13. Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148–54.

    Article  CAS  PubMed  Google Scholar 

  14. Ebenezer GJ, O’Donnell R, Hauer P, Cimino NP, McArthur JC, Polydefkis M. Impaired neurovascular repair in subjects with diabetes following experimental intracutaneous axotomy. Brain. 2011;134:1853–63.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology. 1996;47:1042–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kalichman MW, Powell HC, Mizisin AP. Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol. 1998;95:47–56.

    Article  CAS  PubMed  Google Scholar 

  17. Said G. Diabetic neuropathy—a review. Nat Clin Pract Neurol. 2007;3:331–40.

    Article  PubMed  Google Scholar 

  18. Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004;127:1606–15.

    Article  PubMed  Google Scholar 

  19. Beiswenger KK, Calcutt NA, Mizisin AP. Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic mice. Neurosci Lett. 2008;442:267–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Christianson JA, Riekhof JT, Wright DE. Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Exp Neurol. 2003;179:188–99.

    Article  CAS  PubMed  Google Scholar 

  21. Christianson JA, Ryals JM, Johnson MS, Dobrowsky RT, Wright DE. Neurotrophic modulation of myelinated cutaneous innervation and mechanical sensory loss in diabetic mice. Neuroscience. 2007;145:303–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain. 2008;140:48–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mizisin AP, Nelson RW, Sturges BK, Vernau KM, Lecouteur RA, Williams DC, et al. Comparable myelinated nerve pathology in feline and human diabetes mellitus. Acta Neuropathol. 2007;113:431–42.

    Article  PubMed  Google Scholar 

  24. Lauria G, Morbin M, Lombardi R, Borgna M, Mazzoleni G, Sghirlanzoni A, et al. Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology. 2003;61:631–6.

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt RE. Neuropathology and pathogenesis of diabetic autonomic neuropathy. Int Rev Neurobiol. 2002;50:257–92.

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt RE, Nelson JS, Johnson Jr EM. Experimental diabetic autonomic neuropathy. Am J Pathol. 1981;103:210–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Zherebitskaya E, Akude E, Smith DR, Fernyhough P. Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes. 2009;58:1356–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bennett GJ, Doyle T, Salvemini D. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol. 2014;10:326–36.

    Article  CAS  PubMed  Google Scholar 

  29. Cashman CR, Hoke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett. 2015;596:33–50.

    Article  CAS  PubMed  Google Scholar 

  30. Flatters SJ. The contribution of mitochondria to sensory processing and pain. Prog Mol Biol Transl Sci. 2015;131:119–46.

    Article  PubMed  Google Scholar 

  31. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12:537–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Schmidt RE, Beaudet LN, Plurad SB, Dorsey DA. Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia. Brain Res. 1997;769:375–83.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt RE, Dorsey D, Parvin CA, Beaudet LN, Plurad SB, Roth KA. Dystrophic axonal swellings develop as a function of age and diabetes in human dorsal root ganglia. J Neuropathol Exp Neurol. 1997;56:1028–43.

    Article  CAS  PubMed  Google Scholar 

  34. Kamiya H, Zhang W, Sima AA. Degeneration of the Golgi and neuronal loss in dorsal root ganglia in diabetic BioBreeding/Worcester rats. Diabetologia. 2006;49:2763–74.

    Article  CAS  PubMed  Google Scholar 

  35. Casanova-Molla J, Morales M, Garrabou G, Sola-Valls N, Soriano A, Calvo M, et al. Mitochondrial loss indicates early axonal damage in small fiber neuropathies. J Peripher Nerv Syst. 2012;17:147–57.

    Article  CAS  PubMed  Google Scholar 

  36. Hamid HS, Mervak CM, Munch AE, Robell NJ, Hayes JM, Porzio MT, et al. Hyperglycemia- and neuropathy-induced changes in mitochondria within sensory nerves. Ann Clin Transl Neurol. 2014;1:799–812.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ebenezer GJ, McArthur JC, Thomas D, Murinson B, Hauer P, Polydefkis M, et al. Denervation of skin in neuropathies: the sequence of axonal and Schwann cell changes in skin biopsies. Brain. 2007;130:2703–14.

    Article  PubMed  Google Scholar 

  38. Fernyhough P, Roy Chowdhury SK, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab. 2010;5:39–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Schmidt RE, Green KG, Snipes LL, Feng D. Neuritic dystrophy and neuronopathy in Akita (Ins2(Akita)) diabetic mouse sympathetic ganglia. Exp Neurol. 2009;216:207–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Schmidt RE, Parvin CA, Green KG. Synaptic ultrastructural alterations anticipate the development of neuroaxonal dystrophy in sympathetic ganglia of aged and diabetic mice. J Neuropathol Exp Neurol. 2008;67:1166–86.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 2010;120:477–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Schmidt RE, Dorsey DA, Beaudet LN, Frederick KE, Parvin CA, Plurad SB, et al. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy. Am J Pathol. 2003;163:2077–91.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lashin OM, Szweda PA, Szweda LI, Romani AM. Decreased complex II respiration and HNE-modified SDH subunit in diabetic heart. Free Radic Biol Med. 2006;40:886–96.

    Article  CAS  PubMed  Google Scholar 

  44. Yang JY, Yeh HY, Lin K, Wang PH. Insulin stimulates Akt translocation to mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation in diabetic myocardium. J Mol Cell Cardiol. 2009;46(6):919–26.

    Article  CAS  PubMed  Google Scholar 

  45. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013;123:4888–99. First demonstration in mouse kidney of diabetes-induced reduction in AMPK signaling and mitochondrial function and lowered respiratory chain-associated ROS production.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24:1901–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.

    Article  CAS  PubMed  Google Scholar 

  48. Kruszynska YT, Mulford MI, Baloga J, Yu JG, Olefsky JM. Regulation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects. Diabetes. 1998;47:1107–13.

    Article  CAS  PubMed  Google Scholar 

  49. Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007;56:1592–9.

    Article  CAS  PubMed  Google Scholar 

  50. Huang TJ, Price SA, Chilton L, Calcutt NA, Tomlinson DR, Verkhratsky A, et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes. 2003;52:2129–36.

    Article  CAS  PubMed  Google Scholar 

  51. Huang TJ, Sayers NM, Verkhratsky A, Fernyhough P. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol. 2005;194:279–83.

    Article  CAS  PubMed  Google Scholar 

  52. Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes. 2000;49:1932–8.

    Article  CAS  PubMed  Google Scholar 

  53. Akude E, Zherebitskaya E, Chowdhury SK, Smith DR, Dobrowsky RT, Fernyhough P. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes. 2011;60:288–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Chowdhury SK, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes. 2010;59:1082–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ma J, Farmer KL, Pan P, Urban MJ, Zhao H, Blagg BS, et al. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. J Pharmacol Exp Ther. 2014;348:281–92. A novel drug activating the heat shock response reversed functional deficits in sensation while also correcting aberrant mitochondrial function in DRG of type 1 and 2 diabetic mice.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Urban MJ, Pan P, Farmer KL, Zhao H, Blagg BS, Dobrowsky RT. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Exp Neurol. 2012;235:388–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Zhang L, Zhao H, Blagg BS, Dobrowsky RT. C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. J Proteome Res. 2012;11:2581–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Chowdhury SK, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion. 2011;11:845–54.

    Article  CAS  PubMed  Google Scholar 

  59. Bugger H, Chen D, Riehle C, Soto J, Theobald HA, Hu XX, et al. Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes. 2009;58:1986–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhang L, Yu C, Vasquez FE, Galeva N, Onyango I, Swerdlow RH, et al. Hyperglycemia alters the schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production. J Proteome Res. 2010;9:458–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hinder LM, Vivekanandan-Giri A, McLean LL, Pennathur S, Feldman EL. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J Endocrinol. 2013;216:1–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Feige JN, Auwerx J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol. 2007;17:292–301.

    Article  CAS  PubMed  Google Scholar 

  63. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A. 2001;98:3820–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423:550–5.

    Article  CAS  PubMed  Google Scholar 

  65. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20:1868–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Czubryt MP, Olson EN. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res. 2004;59:105–24.

    Article  CAS  PubMed  Google Scholar 

  67. Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2015;282:647–72.

    Article  CAS  PubMed  Google Scholar 

  68. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829–39.

    Article  CAS  PubMed  Google Scholar 

  69. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

    Article  CAS  PubMed  Google Scholar 

  70. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, et al. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem. 2005;280:10290–7.

    Article  CAS  PubMed  Google Scholar 

  72. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 2008;582:46–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM, Kumpf S, et al. Dietary obesity-associated Hif1alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 2012;26:259–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Hirschey MD, Shimazu T, Capra JA, Pollard KS, Verdin E. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY). 2011;3:635–42.

    CAS  Google Scholar 

  75. Bao J, Sack MN. Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors. Cell Mol Life Sci. 2010;67:3073–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.

    Article  CAS  PubMed  Google Scholar 

  77. Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005;280:16456–60.

    Article  CAS  PubMed  Google Scholar 

  78. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20:98–105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Canto C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci. 2010;67:3407–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond). 2008;32 Suppl 4:S7–S12.

    Article  CAS  Google Scholar 

  81. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104:12017–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014;7:241–53.

    PubMed Central  PubMed  Google Scholar 

  83. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG. Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells. Biochem J. 2014;459:275–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Valentine RJ, Coughlan KA, Ruderman NB, Saha AK. Insulin inhibits AMPK activity and phosphorylates AMPK Ser485/491 through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys. 2014;562:62–9. In vitro characterization of insulin signaling via Akt to down-regulate AMPKα activity independent of changes in Thr 172 phosphorylation status in a variety of cell types.

  85. Horman S, Vertommen D, Heath R, Neumann D, Mouton V, Woods A, et al. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem. 2006;281:5335–40.

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki T, Bridges D, Nakada D, Skiniotis G, Morrison SJ, Lin JD, et al. Inhibition of AMPK catabolic action by GSK3. Mol Cell. 2013;50:407–19. Insulin signaling induces GSK3 binding to the AMPKβ subunit triggering conformational change in the AMPKα subunit that elevates access of phosphatases and so leads to decreased Thr 172 phosphorylation and inhibition of AMPK activity.

  87. Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A. 2007;104:7217–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 2007;26:3169–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397–408.

    Article  CAS  PubMed  Google Scholar 

  90. Tsunemi T, La Spada AR. PGC-1alpha at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond. Prog Neurobiol. 2012;97:142–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144:689–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3:e101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119:121–35.

    Article  CAS  PubMed  Google Scholar 

  94. Harting K, Knoll B. SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology. Eur J Cell Biol. 2010;89:262–9.

    Article  CAS  PubMed  Google Scholar 

  95. Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res. 2007;32:187–95.

    Article  CAS  PubMed  Google Scholar 

  96. Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, Luscher-Firzlaff J, et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol. 2008;180:915–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Ji S, Doucette JR, Nazarali AJ. Sirt2 is a novel in vivo downstream target of Nkx2.2 and enhances oligodendroglial cell differentiation. J Mol Cell Biol. 2011;3:351–9.

    Article  CAS  PubMed  Google Scholar 

  98. Kim SH, Lu HF, Alano CC. Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS One. 2011;6:e14731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Sharma SS, Kumar A, Arora M, Kaundal RK. Neuroprotective potential of combination of resveratrol and 4-amino 1,8 naphthalimide in experimental diabetic neuropathy: focus on functional, sensorimotor and biochemical changes. Free Radic Res. 2009;43:400–8.

    Article  CAS  PubMed  Google Scholar 

  100. Kumar A, Kaundal RK, Iyer S, Sharma SS. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci. 2007;80:1236–44.

    Article  CAS  PubMed  Google Scholar 

  101. Roy Chowdhury SK, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S, et al. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain. 2012;135:1751–66. First study to reveal that diabetes depressed AMPK/PGC-1α expression/signaling in rodent adult sensory neurons leading to mitochondrial dysfunction and associated neuropathy.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Choi J, Chandrasekaran K, Inoue T, Muragundla A, Russell JW. PGC-1alpha regulation of mitochondrial degeneration in experimental diabetic neuropathy. Neurobiol Dis. 2014;64:118–30. Knockdown of PGC-1α increased the severity of sensory neuropathy in mice made type 1 diabetic and over-expression in cultured neurons protected from diabetes-related stressors.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Mizisin AP, Vu Y, Shuff M, Calcutt NA. Ciliary neurotrophic factor improves nerve conduction and ameliorates regeneration deficits in diabetic rats. Diabetes. 2004;53:1807–12.

    Article  CAS  PubMed  Google Scholar 

  104. Saleh A, Roy Chowdhury SK, Smith DR, Balakrishnan S, Tessler L, Martens C, et al. Ciliary neurotrophic factor activates NF-kappaB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology. 2013;65:65–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–38.

    Article  CAS  PubMed  Google Scholar 

  106. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27:1766–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295:E242–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Zala D, Hinckelmann MV, Yu H, da Cunha MM L, Liot G, Cordelieres FP, et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell. 2013;152:479–91. Energy source for motor proteins driving fast axonal transport of cargoes is GAPDH that is an intrinsic component of the transport complex and provides local ATP. First evidence that axonal transport occurs independently of a mitochondrial source of ATP.

    Article  CAS  PubMed  Google Scholar 

  109. Bernstein BW, Bamburg JR. Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci. 2003;23:1–6.

    CAS  PubMed  Google Scholar 

  110. Chen H, Chan DC. Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol. 2006;18:453–9.

    Article  CAS  PubMed  Google Scholar 

  111. Mironov SL. ADP regulates movements of mitochondria in neurons. Biophys J. 2007;92:2944–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Kruger L, Perl ER, Sedivec MJ. Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J Comp Neurol. 1981;198:137–54.

    Article  CAS  PubMed  Google Scholar 

  113. Sajic M, Mastrolia V, Lee CY, Trigo D, Sadeghian M, Mosley AJ, et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLoS Biol. 2013;11:e1001754. In vivo imaging of the saphenous nerve using Thy1-CFP/COX8A mice with neuronally targeted and labeled mitochondria revealed that enhanced axonal activity increased mitochondrial trafficking.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Courchesne SL, Karch C, Pazyra-Murphy MF, Segal RA. Sensory neuropathy attributable to loss of Bcl-w. J Neurosci. 2011;31:1624–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30:4232–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci. 2007;27:422–30.

    Article  CAS  PubMed  Google Scholar 

  117. Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res. 2010;88:229–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Gao AW, Canto C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol Med. 2014;6:580–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:92–103.

    Article  CAS  Google Scholar 

  120. da Silva XG, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J. 2003;371:761–74.

    Article  Google Scholar 

  121. Mountjoy PD, Rutter GA. Glucose sensing by hypothalamic neurones and pancreatic islet cells: AMPle evidence for common mechanisms? Exp Physiol. 2007;92:311–9.

    Article  CAS  PubMed  Google Scholar 

  122. Balestrieri ML, Rienzo M, Felice F, Rossiello R, Grimaldi V, Milone L, et al. High glucose downregulates endothelial progenitor cell number via SIRT1. Biochim Biophys Acta. 2008;1784:936–45.

    Article  CAS  PubMed  Google Scholar 

  123. Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One. 2013;8:e54514.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Vedantham S, Thiagarajan D, Ananthakrishnan R, Wang L, Rosario R, Zou YS, et al. Aldose reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of proinflammatory and prothrombotic signals. Diabetes. 2014;63:761–74. In endothelial cells pharmacological or siRNA inhibition of aldose reductase or sorbitol dehydrogenase prevented high [glucose]-induced defects in SIRT1 activity and associated downstream elevations in acetylation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Ido Y, Nyengaard JR, Chang K, Tilton RG, Kilo C, Mylari BL, et al. Early neural and vascular dysfunctions in diabetic rats are largely sequelae of increased sorbitol oxidation. Antioxid Redox Signal. 2010;12:39–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Oates PJ. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets. 2008;9:14–36.

    Article  CAS  PubMed  Google Scholar 

  127. Obrosova IG, Drel VR, Kumagai AK, Szabo C, Pacher P, Stevens MJ. Early diabetes-induced biochemical changes in the retina: comparison of rat and mouse models. Diabetologia. 2006;49:2525–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Li F, Szabo C, Pacher P, Southan GJ, Abatan OI, Charniauskaya T, et al. Evaluation of orally active poly(ADP-ribose) polymerase inhibitor in streptozotocin-diabetic rat model of early peripheral neuropathy. Diabetologia. 2004;47:710–7.

    Article  CAS  PubMed  Google Scholar 

  129. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287:C817–33.

    Article  CAS  PubMed  Google Scholar 

  130. Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B. 1998;168:149–58.

    Article  CAS  PubMed  Google Scholar 

  131. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  132. Chen SD, Lin TK, Yang DI, Lee SY, Shaw FZ, Liou CW, et al. Protective effects of peroxisome proliferator-activated receptors gamma coactivator-1alpha against neuronal cell death in the hippocampal CA1 subfield after transient global ischemia. J Neurosci Res. 2010;88:605–13.

    CAS  PubMed  Google Scholar 

  133. Lu Z, Xu X, Hu X, Fassett J, Zhu G, Tao Y, et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal. 2010;13:1011–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  135. Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A. 2009;106:14385–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci. 2008;9:36–45.

    Article  CAS  PubMed  Google Scholar 

  137. Gregersen G. A study of the peripheral nerves in diabetic subjects during ischaemia. J Neurol Neurosurg Psychiatry. 1968;31:175–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Low PA, Ward K, Schmelzer JD, Brimijoin S. Ischemic conduction failure and energy metabolism in experimental diabetic neuropathy. Am J Physiol. 1985;248:E457–62.

    CAS  PubMed  Google Scholar 

  139. Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta. 2011;1807:568–76. Comprehensive review of pathways regulating metabolic switching.

    Article  CAS  PubMed  Google Scholar 

  140. Ibsen KH. The Crabtree effect: a review. Cancer Res. 1961;21:829–41.

    CAS  PubMed  Google Scholar 

  141. Coughlan KA, Balon TW, Valentine RJ, Petrocelli R, Schultz V, Brandon A, et al. Nutrient excess and AMPK downregulation in incubated skeletal muscle and muscle of glucose infused rats. PLoS One. 2015;10:e0127388.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Saha AK, Xu XJ, Lawson E, Deoliveira R, Brandon AE, Kraegen EW, et al. Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes. 2010;59:2426–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Corona JC, Duchen MR. PPARgamma and PGC-1alpha as therapeutic targets in Parkinson’s. Neurochem Res. 2015;40:308–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Eschbach J, Schwalenstocker B, Soyal SM, Bayer H, Wiesner D, Akimoto C, et al. PGC-1alpha is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22:3477–84.

    Article  CAS  PubMed  Google Scholar 

  145. Weydt P, Soyal SM, Landwehrmeyer GB, Patsch W. A single nucleotide polymorphism in the coding region of PGC-1alpha is a male-specific modifier of Huntington disease age-at-onset in a large European cohort. BMC Neurol. 2014;14:1.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Zolezzi JM, Bastias-Candia S, Santos MJ, Inestrosa NC. Alzheimer’s disease: relevant molecular and physiopathological events affecting amyloid-beta brain balance and the putative role of PPARs. Front Aging Neurosci. 2014;6:176.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Godoy JA, Zolezzi JM, Braidy N, Inestrosa NC. Role of Sirt1 during the ageing process: relevance to protection of synapses in the brain. Mol Neurobiol. 2014;50:744–56.

    Article  CAS  PubMed  Google Scholar 

  148. Lazo-Gomez R, Ramirez-Jarquin UN, Tovar YRLB, Tapia R. Histone deacetylases and their role in motor neuron degeneration. Front Cell Neurosci. 2013;7:243.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Chowdhury SK, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis. 2013;51:56–65. Places role of mitochondrial dysfunction in diabetes in context with other neuropathic diseases displaying a mitochondrial component to etiology.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review was funded through Canadian Institutes of Health Research (CIHR) grant number MOP-130282. I thank all my research staff in recent years including Mr. Tarek Habash, Mrs. Kelly Jorundson, Dr. Subir Roy Chowdhury, Dr. Ali Saleh, Ms. Emily Schartner, Darrell Smith DVM, and Mrs. Lori Tessler for their contributions toward the scientific productivity of my laboratory.

Compliance with Ethics Guidelines

Conflict of Interest

Paul Fernyhough declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fernyhough.

Additional information

Websites

http://www.cdc.gov/diabetes/home/index.html—Centers for Disease Control and Prevention, Diabetes home.

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernyhough, P. Mitochondrial Dysfunction in Diabetic Neuropathy: a Series of Unfortunate Metabolic Events. Curr Diab Rep 15, 89 (2015). https://doi.org/10.1007/s11892-015-0671-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0671-9

Keywords

Navigation