Skip to main content
Log in

Omega-3 Fatty Acids and Mood Stabilizers Alter Behavioural and Energy Metabolism Parameters in Animals Subjected to an Animal Model of Mania Induced by Fenproporex

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Studies have shown that changes in energy metabolism are involved in the pathophysiology of bipolar disorder (BD). It was suggested that omega-3 (ω3) fatty acids have beneficial properties in the central nervous system and that this fatty acid plays an important role in energy metabolism. Therefore, the study aimed to evaluate the effect of ω3 fatty acids alone and in combination with lithium (Li) or valproate (VPA) on behaviour and parameters of energy metabolism in an animal model of mania induced by fenproporex. Our results showed that co-administration of ω3 fatty acids and Li was able to prevent and reverse the increase in locomotor and exploratory activity induced by fenproporex. The combination of ω3 fatty acids with VPA was only able to prevent the fenproporex-induced hyperactivity. For the energy metabolism parameters, our results showed that the administration of Fen for the reversal or prevention protocol inhibited the activities of succinate dehydrogenase, complex II and complex IV in the hippocampus. However, hippocampal creatine kinase (CK) activity was decreased only for the reversal protocol. The ω3 fatty acids, alone and in combination with VPA or Li, prevented and reversed the decrease in complex II, IV and succinate dehydrogenase activity, whereas the decrease in CK activity was only reversed after the co-administration of ω3 fatty acids and VPA. In conclusion, our results showed that the ω3 fatty acids combined with VPA or Li were able to prevent and reverse manic-like hyperactivity and the inhibition of energy metabolism in the hippocampus, suggesting that ω3 fatty acids may play an important role in the modulation of behavioural parameters and energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Soreca I, Frank E, Kupfer DJ (2009) The phenomenology of bipolar disorder: what drives the high rate of medical burden and determines long-term prognosis? Depress Anxiety 26(1):73–82. doi:10.1002/da.20521

    Article  PubMed  PubMed Central  Google Scholar 

  2. Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C, Karam EG, Ladea M, Medina-Mora ME, Ono Y, Posada-Villa J, Sagar R, Wells JE, Zarkov Z (2011) Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 68(3):241–251. doi:10.1001/archgenpsychiatry.2011.12

    Article  PubMed  PubMed Central  Google Scholar 

  3. McIntyre RS, Muzina DJ, Kemp DE, Blank D, Woldeyohannes HO, Lofchy J, Soczynska JK, Banik S, Konarski JZ (2008) Bipolar disorder and suicide: research synthesis and clinical translation. Curr Psychiatry Rep 10(1):66–72

    Article  PubMed  Google Scholar 

  4. Walpoth-Niederwanger M, Kemmler G, Grunze H, Weiss U, Hortnagl C, Strauss R, Blasko I, Hausmann A (2012) Treatment patterns in inpatients with bipolar disorder at a psychiatric university hospital over a 9-year period: focus on mood stabilizers. Int Clin Psychopharmacol 27(5):256–266. doi:10.1097/YIC.0b013e328356ac92

    Article  PubMed  Google Scholar 

  5. Eden Evins A, Demopulos C, Nierenberg A, Culhane MA, Eisner L, Sachs G (2006) A double-blind, placebo-controlled trial of adjunctive donepezil in treatment-resistant mania. Bipolar Disord 8(1):75–80. doi:10.1111/j.1399-5618.2006.00243.x

    Article  CAS  PubMed  Google Scholar 

  6. Balanza-Martinez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabares-Seisdedos R, Kapczinski F (2011) Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother 11(7):1029–1047. doi:10.1586/ern.11.42

    Article  PubMed  Google Scholar 

  7. Fountoulakis KN, Kelsoe JR, Akiskal H (2012) Receptor targets for antidepressant therapy in bipolar disorder: an overview. J Affect Disord 138(3):222–238. doi:10.1016/j.jad.2011.04.043

    Article  CAS  PubMed  Google Scholar 

  8. Kishi T, Yoshimura R, Fukuo Y, Okochi T, Matsunaga S, Umene-Nakano W, Nakamura J, Serretti A, Correll CU, Kane JM, Iwata N (2013) The serotonin 1A receptor gene confer susceptibility to mood disorders: results from an extended meta-analysis of patients with major depression and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 263(2):105–118. doi:10.1007/s00406-012-0337-4

    Article  PubMed  Google Scholar 

  9. Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, Gu HH, Sadee W (2011) Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacology 36(8):1644–1655. doi:10.1038/npp.2011.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rajkowska G (2002) Cell pathology in bipolar disorder. Bipolar Disord 4(2):105–116

    Article  PubMed  Google Scholar 

  11. Brambilla P, Perez J, Barale F, Schettini G, Soares JC (2003) GABAergic dysfunction in mood disorders. Mol Psychiatry 8(8):721–737. doi:10.1038/sj.mp.4001362, 715

    Article  CAS  PubMed  Google Scholar 

  12. Bielau H, Brisch R, Bernard-Mittelstaedt J, Dobrowolny H, Gos T, Baumann B, Mawrin C, Bernstein HG, Bogerts B, Steiner J (2012) Immunohistochemical evidence for impaired nitric oxide signaling of the locus coeruleus in bipolar disorder. Brain Res 1459:91–99. doi:10.1016/j.brainres.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  13. Rezin GT, Jeremias IC, Ferreira GK, Cardoso MR, Morais MO, Gomes LM, Martinello OB, Valvassori SS, Quevedo J, Streck EL (2011) Brain energy metabolism is activated after acute and chronic administration of fenproporex in young rats. Int J Dev Neurosci 29(8):937–942. doi:10.1016/j.ijdevneu.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  14. Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29(3):311–324. doi:10.1016/j.ijdevneu.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  15. Gigante AD, Andreazza AC, Lafer B, Yatham LN, Beasley CL, Young LT (2011) Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci Lett 505(1):47–51. doi:10.1016/j.neulet.2011.09.064

    Article  CAS  PubMed  Google Scholar 

  16. Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67(4):360–368. doi:10.1001/archgenpsychiatry.2010.22

    Article  CAS  PubMed  Google Scholar 

  17. Frey BN, Martins MR, Petronilho FC, Dal-Pizzol F, Quevedo J, Kapczinski F (2006) Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord 8(3):275–280. doi:10.1111/j.1399-5618.2006.00318.x

    Article  CAS  PubMed  Google Scholar 

  18. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31(5):326–332

    PubMed  PubMed Central  Google Scholar 

  19. Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Changes in antioxidant defense enzymes after d-amphetamine exposure: implications as an animal model of mania. Neurochem Res 31(5):699–703. doi:10.1007/s11064-006-9070-6

    Article  CAS  PubMed  Google Scholar 

  20. Gergerlioglu HS, Savas HA, Bulbul F, Selek S, Uz E, Yumru M (2007) Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuropsychopharmacol Biol Psychiatry 31(3):697–702. doi:10.1016/j.pnpbp.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  21. Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V Jr, da Silva VR, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421(1):33–36. doi:10.1016/j.neulet.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  22. Brown NC, Andreazza AC, Young LT (2014) An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 218(1–2):61–68. doi:10.1016/j.psychres.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  23. Wu A, Ying Z, Gomez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155(3):751–759. doi:10.1016/j.neuroscience.2008.05.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68(5):280–289. doi:10.1111/j.1753-4887.2010.00287.x

    Article  PubMed  Google Scholar 

  25. Hibbeln JR, Salem N Jr (1995) Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 62(1):1–9

    CAS  PubMed  Google Scholar 

  26. Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, Keck PE Jr, Marangell LB, Richardson AJ, Lake J, Stoll AL (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67(12):1954–1967

    Article  CAS  PubMed  Google Scholar 

  27. McNamara RK (2009) Evaluation of docosahexaenoic acid deficiency as a preventable risk factor for recurrent affective disorders: current status, future directions, and dietary recommendations. Prostaglandins Leukot Essent Fatty Acids 81(2–3):223–231. doi:10.1016/j.plefa.2009.05.017

    Article  CAS  PubMed  Google Scholar 

  28. Ferraz AC, Kiss A, Araujo RL, Salles HM, Naliwaiko K, Pamplona J, Matheussi F (2008) The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain. Prostaglandins Leukot Essent Fatty Acids 78(3):183–188. doi:10.1016/j.plefa.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  29. Burgess JR, Stevens L, Zhang W, Peck L (2000) Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr 71(1 Suppl):327S–330S

    CAS  PubMed  Google Scholar 

  30. Bourre JM (2004) Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J Nutr Health Aging 8(3):163–174

    CAS  PubMed  Google Scholar 

  31. Hibbeln JR, Nieminen LR, Blasbalg TL, Riggs JA, Lands WE (2006) Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr 83(6 Suppl):1483S–1493S

    CAS  PubMed  Google Scholar 

  32. Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75(4–5):259–269. doi:10.1016/j.plefa.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  33. Model CS, Gomes LM, Scaini G, Ferreira GK, Goncalves CL, Rezin GT, Steckert AV, Valvassori SS, Varela RB, Quevedo J, Streck EL (2014) Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration. Metab Brain Dis 29(1):185–192. doi:10.1007/s11011-013-9473-4

    Article  CAS  PubMed  Google Scholar 

  34. Rezin GT, Furlanetto CB, Scaini G, Valvassori SS, Goncalves CL, Ferreira GK, Jeremias IC, Resende WR, Cardoso MR, Varela RB, Quevedo J, Streck EL (2014) Fenproporex increases locomotor activity and alters energy metabolism, and mood stabilizers reverse these changes: a proposal for a new animal model of mania. Mol Neurobiol 49(2):877–892. doi:10.1007/s12035-013-8566-8

    Article  CAS  PubMed  Google Scholar 

  35. Ozyurt B, Sarsilmaz M, Akpolat N, Ozyurt H, Akyol O, Herken H, Kus I (2007) The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 50(1):196–202. doi:10.1016/j.neuint.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  36. Gama CS, Canever L, Panizzutti B, Gubert C, Stertz L, Massuda R, Pedrini M, de Lucena DF, Luca RD, Fraga DB, Heylmann AS, Deroza PF, Zugno AI (2012) Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: a study in adolescent rats with ketamine-induced model of schizophrenia. Schizophr Res 141(2–3):162–167. doi:10.1016/j.schres.2012.08.002

    Article  PubMed  Google Scholar 

  37. Frey BN, Andreazza AC, Cereser KM, Martins MR, Valvassori SS, Reus GZ, Quevedo J, Kapczinski F (2006) Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci 79(3):281–286. doi:10.1016/j.lfs.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53(1):88–102

    Article  CAS  PubMed  Google Scholar 

  39. Ericson E, Samuelsson J, Ahlenius S (1991) Photocell measurements of rat motor activity. A contribution to sensitivity and variation in behavioral observations. J Pharmacol Methods 25(2):111–122

    Article  CAS  PubMed  Google Scholar 

  40. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  42. Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11. doi:10.1016/0076-6879(69)13005-0

    Article  CAS  Google Scholar 

  43. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153(1):23–36

    Article  CAS  PubMed  Google Scholar 

  44. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328(2):309–316. doi:10.1006/abbi.1996.0178

    Article  CAS  PubMed  Google Scholar 

  45. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228(1):35–51

    Article  CAS  PubMed  Google Scholar 

  46. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  47. Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62(4):302–309. doi:10.1002/syn.20496

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Q, Wu Y, Sha H, Zhang P, Jia J, Hu Y, Zhu J (2012) Early exercise affects mitochondrial transcription factors expression after cerebral ischemia in rats. Int J Mol Sci 13(2):1670–1679. doi:10.3390/ijms13021670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anand A, Verhoeff P, Seneca N, Zoghbi SS, Seibyl JP, Charney DS, Innis RB (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 157(7):1108–1114

    Article  CAS  PubMed  Google Scholar 

  50. Lavialle M, Champeil-Potokar G, Alessandri JM, Balasse L, Guesnet P, Papillon C, Pevet P, Vancassel S, Vivien-Roels B, Denis I (2008) An (n-3) polyunsaturated fatty acid-deficient diet disturbs daily locomotor activity, melatonin rhythm, and striatal dopamine in Syrian hamsters. J Nutr 138(9):1719–1724

    CAS  PubMed  Google Scholar 

  51. McNamara RK, Sullivan J, Richtand NM (2008) Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult mice: prevention by chronic lithium treatment. J Psychiatr Res 42(6):458–468. doi:10.1016/j.jpsychires.2007.05.009

    Article  PubMed  Google Scholar 

  52. Arunagiri P, Rajeshwaran K, Shanthakumar J, Tamilselvan T, Balamurugan E (2014) Combination of omega-3 fatty acids, lithium, and aripiprazole reduces oxidative stress in brain of mice with mania. Biol Trace Elem Res 160(3):409–417. doi:10.1007/s12011-014-0067-8

    Article  CAS  PubMed  Google Scholar 

  53. Sinclair AJ, Begg D, Mathai M, Weisinger RS (2007) Omega 3 fatty acids and the brain: review of studies in depression. Asia Pac J Clin Nutr 16(Suppl 1):391–397

    CAS  PubMed  Google Scholar 

  54. Rao JS, Lee HJ, Rapoport SI, Bazinet RP (2008) Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol Psychiatry 13(6):585–596. doi:10.1038/mp.2008.31

    Article  CAS  PubMed  Google Scholar 

  55. Logan AC (2003) Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern Med Rev 8(4):410–425

    PubMed  Google Scholar 

  56. Serhan CN, Yacoubian S, Yang R (2008) Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 3:279–312. doi:10.1146/annurev.pathmechdis.3.121806.151409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50(Suppl):S400–S405. doi:10.1194/jlr.R800068-JLR200

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, Halver JE, Puskas LG (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 101(30):10931–10936. doi:10.1073/pnas.0402342101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E, Cress KK, Marangell LB (1999) Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 56(5):407–412

    Article  CAS  PubMed  Google Scholar 

  60. Medini L, Colli S, Mosconi C, Tremoli E, Galli C (1990) Diets rich in n-9, n-6 and n-3 fatty acids differentially affect the generation of inositol phosphates and of thromboxane by stimulated platelets, in the rabbit. Biochem Pharmacol 39(1):129–133

    Article  CAS  PubMed  Google Scholar 

  61. Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR (1993) Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 91(2):651–660. doi:10.1172/JCI116245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. El-Ansary AK, Al-Daihan SK, El-Gezeery AR (2011) On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups. Lipids Health Dis 10:142. doi:10.1186/1476-511X-10-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mazza M, Pomponi M, Janiri L, Bria P, Mazza S (2007) Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry 31(1):12–26. doi:10.1016/j.pnpbp.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  64. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021–1029. doi:10.1007/s11064-008-9865-8

    Article  CAS  PubMed  Google Scholar 

  65. Miyazaki I, Asanuma M (2008) Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med Okayama 62(3):141–150

    CAS  PubMed  Google Scholar 

  66. Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S (2005) Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson’s disease. Biochim Biophys Acta 1741(1–2):65–74. doi:10.1016/j.bbadis.2005.03.013

    Article  PubMed  Google Scholar 

  67. Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Nunez MT (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25(4):795–803. doi:10.1007/s10534-012-9525-y

    Article  CAS  PubMed  Google Scholar 

  68. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880

    Article  CAS  PubMed  Google Scholar 

  69. Chen CH, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R, Suckling J, Bullmore E (2006) Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiatry 59(1):31–39. doi:10.1016/j.biopsych.2005.06.008

    Article  PubMed  Google Scholar 

  70. Campbell S, Macqueen G (2004) The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29(6):417–426

    PubMed  PubMed Central  Google Scholar 

  71. de Mello AH, Gassenferth A, Schraiber Rde B, Souza Lda R, Florentino D, Danielski LG, Cittadin-Soares Eda C, Fortunato JJ, Petronilho F, Quevedo J, Rezin GT (2014) Effects of omega-3 on behavioral and biochemical parameters in rats submitted to chronic mild stress. Metab Brain Dis 29(3):691–699. doi:10.1007/s11011-014-9577-5

    Article  PubMed  Google Scholar 

  72. Wilczynska A (2013) Fatty acids in treatment and prevention of depression. Psychiatr Pol 47(4):657–666

    PubMed  Google Scholar 

  73. Kitajka K, Puskas LG, Zvara A, Hackler L Jr, Barcelo-Coblijn G, Yeo YK, Farkas T (2002) The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A 99(5):2619–2624. doi:10.1073/pnas.042698699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stanley WC, Khairallah RJ, Dabkowski ER (2012) Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 15(2):122–126. doi:10.1097/MCO.0b013e32834fdaf7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Katsumata T, Katayama Y, Obo R, Muramatsu H, Ohtori T, Terashi A (1999) Delayed administration of ethyl eicosapentate improves local cerebral blood flow and metabolism without affecting infarct volumes in the rat focal ischemic model. Eur J Pharmacol 372(2):167–174

    Article  CAS  PubMed  Google Scholar 

  76. Young G, Conquer J (2005) Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr Dev 45(1):1–28

    Article  CAS  PubMed  Google Scholar 

  77. Zararsiz I, Kus I, Akpolat N, Songur A, Ogeturk M, Sarsilmaz M (2006) Protective effects of omega-3 essential fatty acids against formaldehyde-induced neuronal damage in prefrontal cortex of rats. Cell Biochem Funct 24(3):237–244. doi:10.1002/cbf.1204

    Article  CAS  PubMed  Google Scholar 

  78. Wang X, Zhao X, Mao ZY, Wang XM, Liu ZL (2003) Neuroprotective effect of docosahexaenoic acid on glutamate-induced cytotoxicity in rat hippocampal cultures. Neuroreport 14(18):2457–2461. doi:10.1097/01.wnr.0000093483.65585.86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the authors who have provided relevant clarification on their articles. The Laboratory of Bioenergetics and Laboratory of Neurosciences (Brazil) are some of the centres of the National Institute for Molecular Medicine (INCT-MM) and members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). The Center for Translational Psychiatry (USA) is funded by the Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston. This research was supported by grants from CNPq (ELS and JQ), FAPESC (ELS and JQ), Instituto Cérebro e Mente (JQ) and UNESC (ELS and JQ).

Authors’ contributions

KC, LMG and MC participated in the study conception and design, biochemical analysis and drafting of the article and approved the version to be published. LJT, JR and ITM performed the biochemical analysis and approved the version to be published. COA and EM performed the behaviour analysis and approved the version to be published. LWK and MRB performed the gene expression analysis and approved the version to be published. GS, ELS and JQ started the project, participated in study conception and design, interpreted the data, drafted the article and approved the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselli Scaini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancelier, K., Gomes, L.M., Carvalho-Silva, M. et al. Omega-3 Fatty Acids and Mood Stabilizers Alter Behavioural and Energy Metabolism Parameters in Animals Subjected to an Animal Model of Mania Induced by Fenproporex. Mol Neurobiol 54, 3935–3947 (2017). https://doi.org/10.1007/s12035-016-9933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9933-z

Keywords

Navigation