Skip to main content

Advertisement

Log in

Mitochondrial Dysfunction and Psychiatric Disorders

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Mitochondrial oxidative phosphorylation is the major ATP-producing pathway, which supplies more than 95% of the total energy requirement in the cells. Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of psychiatric disorders. Tissues with high energy demands, such as the brain, contain a large number of mitochondria, being therefore more susceptible to reduction of the aerobic metabolism. Mitochondrial dysfunction results from alterations in biochemical cascade and the damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neuropsychiatric disorders, such as bipolar disorder, depression and schizophrenia. Bipolar disorder is a prevalent psychiatric disorder characterized by alternating episodes of mania and depression. Recent studies have demonstrated that important enzymes involved in brain energy are altered in bipolar disorder patients and after amphetamine administration, an animal model of mania. Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Several works have demonstrated that metabolism is impaired in some animal models of depression, induced by chronic stress, especially the activities of the complexes of mitochondrial respiratory chain. Schizophrenia is a devastating mental disorder characterized by disturbed thoughts and perception, alongside cognitive and emotional decline associated with a severe reduction in occupational and social functioning, and in coping abilities. Alterations of mitochondrial oxidative phosphorylation in schizophrenia have been reported in several brain regions and also in platelets. Abnormal mitochondrial morphology, size and density have all been reported in the brains of schizophrenic individuals. Considering that several studies link energy impairment to neuronal death, neurodegeneration and disease, this review article discusses energy impairment as a mechanism underlying the pathophysiology of some psychiatric disorders, like bipolar disorder, depression and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-HT1A:

5-Hydroxytryptamine 1A

5-HT1B:

5-Hydroxytryptamine 1B

ACC:

Anterior cingulate cortex

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

cAMP:

Adenosine monophosphate cyclic

CREB:

cAMP response element-binding

HPA:

Hypothalamic-pituitary-adrenal

mtDNA:

Mitochondrial deoxyribonucleic acid

mRNA:

Messenger ribonucleic acid

MRS:

Magnetic resonance spectroscopy

PCR:

Polymerase chain reaction

PET:

Positron emission tomography

rCBF:

Regional cerebral blood flow

ROS:

Reactive oxygen species

References

  1. Calabrese V, Scapagnini G, Giuffrida-Stella AM et al (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26:739–764. doi:10.1023/A:1010955807739

    Article  PubMed  CAS  Google Scholar 

  2. Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB life. doi:10.1002/iub.50

  3. Fattal O, Budur K, Vaughan AJ et al (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47:1–7. doi:10.1176/appi.psy.47.1.1

    Article  PubMed  Google Scholar 

  4. Madrigal JLM, Olivenza R, Moro MA et al (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429. doi:10.1016/S0893-133X(00)00208-6

    Article  PubMed  CAS  Google Scholar 

  5. Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4. doi:10.1074/jbc.R600031200

    Article  PubMed  CAS  Google Scholar 

  6. Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697. doi:10.1038/sj.mp.4001532

    Article  PubMed  CAS  Google Scholar 

  7. Gur RE, Resnick SM, Alavi A et al (1987) Regional brain function in schizophrenia II: repeated evaluation with positron emission tomography. Arch Gen Psychiatry 44:126–129

    PubMed  CAS  Google Scholar 

  8. Belmaker RH (2004) Bipolar disorder. N Engl J Med 351:476–486. doi:10.1056/NEJMra035354

    Article  PubMed  CAS  Google Scholar 

  9. Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293:2528–2530. doi:10.1001/jama.293.20.2528

    Article  PubMed  CAS  Google Scholar 

  10. Müller-Oerlinghausen B, Berghöfer A, Bauer M (2002) Bipolar disorder. Lancet 359:241–247. doi:10.1016/S0140-6736(02)07450-0

    Article  PubMed  Google Scholar 

  11. Bonetto GG, Garbini M, Vieta E (2006) Bipolar depression: What are we doing? J Affect Disord 98:169–171

    Google Scholar 

  12. Goodwin FK, Jamison KR (1990) Manic-depressive illness. Oxford University Press, New York

    Google Scholar 

  13. Woods SW (2000) The economic burden of bipolar disease. J Clin Psychiatry 61:38–41

    PubMed  Google Scholar 

  14. Goldberg JF, Garno JL, Leon AC et al (1998) Rapid titration of mood stabilizers predicts remission from mixed or pure mania in bipolar patients. J Clin Psychiatry 59:151–158

    PubMed  CAS  Google Scholar 

  15. Maguire GA, Phillips G (2003) Optimal dosing of medications (in bipolar disorder). J Fam Pract Suppl:S22–S25

  16. Coyle JT, Duman RS (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38:157–160. doi:10.1016/S0896-6273(03)00195-8

    Article  PubMed  CAS  Google Scholar 

  17. Bezchlibnyk Y, Young LT (2002) The neurobiology of bipolar disorder: focus on signal transduction pathways and the regulation of gene expression. Can J Psychiatry 47:135–148

    PubMed  Google Scholar 

  18. Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547. doi:10.1038/87865

    Article  PubMed  CAS  Google Scholar 

  19. Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919. doi:10.1038/sj.mp.4001711

    Article  PubMed  CAS  Google Scholar 

  20. Bertolino A, Frye M, Callicott JH et al (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53:906–913. doi:10.1016/S0006-3223(02)01911-X

    Article  PubMed  Google Scholar 

  21. Deicken RF, Pegues MP, Anzalone S et al (2003) Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry 160:873–882. doi:10.1176/appi.ajp.160.5.873

    Article  PubMed  Google Scholar 

  22. Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190. doi:10.1034/j.1399-5618.2000.020305.x

    Article  PubMed  CAS  Google Scholar 

  23. Konradi C, Eaton M, MacDonald ML et al (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308. doi:10.1001/archpsyc.61.3.300

    Article  PubMed  CAS  Google Scholar 

  24. Kato T, Takahashi S, Shioiri T et al (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59. doi:10.1016/0165-0327(93)90097-4

    Article  PubMed  CAS  Google Scholar 

  25. Kato T, Inubushi T, Kato N (1998) Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci 10:133–147

    PubMed  CAS  Google Scholar 

  26. Deicken RF, Weiner MW, Fein G (1995) Decreased temporal lobe phosphomonoesters in bipolar disorder. J Affect Disord 33:195–199. doi:10.1016/0165-0327(94)00089-R

    Article  PubMed  CAS  Google Scholar 

  27. Dager SR, Friedman SD, Parow A et al (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458. doi:10.1001/archpsyc.61.5.450

    Article  PubMed  CAS  Google Scholar 

  28. Winsberg ME, Sachs N, Tate DL et al (2000) Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry 47:475–481. doi:10.1016/S0006-3223(99)00183-3

    Article  PubMed  CAS  Google Scholar 

  29. Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276. doi:10.1159/000017321

    Article  PubMed  CAS  Google Scholar 

  30. Blumberg HP, Stern E, Ricketts S et al (1999) Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 156:1986–1988

    PubMed  CAS  Google Scholar 

  31. Blumberg HP, Stern E, Martinez D et al (2000) Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry 48:1045–1052. doi:10.1016/S0006-3223(00)00962-8

    Article  PubMed  CAS  Google Scholar 

  32. Sun X, Wang JF, Tseng M et al (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196

    PubMed  Google Scholar 

  33. Strakowski SM, Sax KW (1998) Progressive behavioral response to repeated D-amphetamine challenge: further evidence for sensitization in humans. Biol Psychiatry 44:1171–1177. doi:10.1016/S0006-3223(97)00454-X

    Article  PubMed  CAS  Google Scholar 

  34. Anand A, Verhoeff P, Seneca N et al (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 157:1108–1114. doi:10.1176/appi.ajp.157.7.1108

    Article  PubMed  CAS  Google Scholar 

  35. Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 28:209–224. doi:10.1016/j.pnpbp.2003.10.015

    Article  PubMed  Google Scholar 

  36. Corrêa C, Amboni G, Assis LC et al (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 31:887–891. doi:10.1016/j.pnpbp.2007.02.005

    Article  PubMed  CAS  Google Scholar 

  37. Gould TD, Manji HK (2002) The Wnt signaling pathway in bipolar disorder. Neuroscientist 8:497–511

    Article  PubMed  CAS  Google Scholar 

  38. Mai L, Jope RS, Li X (2002) BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem 82:75–83. doi:10.1046/j.1471-4159.2002.00939.x

    Article  PubMed  CAS  Google Scholar 

  39. Einat H, Yuan P, Gould TD et al (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood regulation. J Neurosci 23:7311–7316

    PubMed  CAS  Google Scholar 

  40. Beaulieu JM, Sotnikova TD, Yao WD et al (2004) Lithium antagonizes dopamine dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 101:5099–5104. doi:10.1073/pnas.0307921101

    Article  PubMed  CAS  Google Scholar 

  41. Bell EC, Willson MC, Wilman AH et al (2005) Lithium and valproate attenuate dextroamphetamine-induced changes in brain activation. Hum Psychopharmacol 20:87–96. doi:10.1002/hup.665

    Article  PubMed  CAS  Google Scholar 

  42. Bessman SP, Carpenter CL (1985) The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54:831–865. doi:10.1146/annurev.bi.54.070185.004151

    Article  PubMed  CAS  Google Scholar 

  43. Schnyder T, Gross H, Winkler H et al (1991) Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem 266:5318–5322

    PubMed  CAS  Google Scholar 

  44. Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  45. Burbaeva GS, Savushkina OK, Boksha IS (2003) Creatine kinase BB in brain in schizophrenia. World J Biol Psychiatry 4:177–183. doi:10.1080/15622970310029916

    Article  PubMed  Google Scholar 

  46. Zugno AI, Scherer EB, Schuck PF et al (2006) Intrastriatal administration of guanidinoacetate inhibits Na+, K+-ATPase and creatine kinase activities in rat striatum. Metab Brain Dis 21:41–50. doi:10.1007/s11011-006-9003-8

    Article  PubMed  CAS  Google Scholar 

  47. MacDonald ML, Naydenov A, Chu M et al (2006) Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder. Bipolar Disord 8:255–264. doi:10.1111/j.1399-5618.2006.00302.x

    Article  PubMed  CAS  Google Scholar 

  48. Streck EL, Amboni G, Scaini G et al (2008) Brain creatine kinase activity in an animal model of mania. Life Sci 82:424–429. doi:10.1016/j.lfs.2007.11.026

    Article  PubMed  CAS  Google Scholar 

  49. Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68. doi:10.1056/NEJMra073096

    Article  PubMed  CAS  Google Scholar 

  50. Zhang X, Beaulieu JM, Sotnikova TD et al (2004) Triptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217. doi:10.1126/science.1097540

    Article  PubMed  CAS  Google Scholar 

  51. Artigas F (2008) Serotonin receptors: role in depression. Actas Esp Psiquiatr 36:28–30

    Google Scholar 

  52. Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359. doi:10.1038/sj.mp.4001949

    Article  PubMed  CAS  Google Scholar 

  53. Zhang X, Gainetdinov RR, Beauliu JM et al (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16. doi:10.1016/j.neuron.2004.12.014

    Article  PubMed  CAS  Google Scholar 

  54. Shelton RC (2007) The molecular neurobiology of depression. Psychiatr Clin North Am 30:1–11. doi:10.1016/j.psc.2006.12.005

    Article  PubMed  Google Scholar 

  55. Gillespie CF, Nemeroff CB (2005) Hypercortisolemia and depression. Psychosom Med 67:26–28. doi:10.1097/01.psy.0000163456.22154.d2

    Article  Google Scholar 

  56. Marcos B, Aisa B, Ramírez MJ (2008) Functional interaction between 5-HT6 receptors and hypothalamicepituitaryeadrenal axis: Cognitive implications. Neuropharmacology 54:708–714. doi:10.1016/j.neuropharm.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  57. Gardner A, Johansson A, Wibom R et al (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76:55–68. doi:10.1016/S0165-0327(02)00067-8

    Article  PubMed  CAS  Google Scholar 

  58. Gamaro GD, Streck EL, Matté C et al (2003) Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28:1339–1344. doi:10.1023/A:1024988113978

    Article  PubMed  CAS  Google Scholar 

  59. Rezin GT, Cardoso MR, Gonçalves CL et al (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int. doi:10.1016/j.neuint.2008.09.012

  60. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686. doi:10.1152/ajpcell.00213.2006

    Article  CAS  Google Scholar 

  61. Torres RL, Torres IL, Gamaro GD et al (2004) Lipid peroxidation and total radical-trapping potential of the lungs of rats submitted to chronic and sub-chronic stress. Braz J Med Biol Res 37:185–192. doi:10.1590/S0100-879X2004000200004

    Article  PubMed  CAS  Google Scholar 

  62. Konarski JZ, McIntyre RS, Kennedy SH et al (2008) Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord 10:1–37

    PubMed  Google Scholar 

  63. Lee BT, Seok JH, Lee BC et al (2008) Neural correlates of affective processing in response to sad and angry facial stimuli in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:778–785. doi:10.1016/j.pnpbp.2007.12.009

    Article  PubMed  Google Scholar 

  64. Búrigo M, Roza CA, Bassani C et al (2006) Effect of electroconvulsive shock on mitochondrial respiratory chain in rat brain. Neurochem Res 31:1375–1379. doi:10.1007/s11064-006-9185-9

    Article  PubMed  CAS  Google Scholar 

  65. Búrigo M, Roza CA, Bassani C et al (2006) Decreased creatine kinase activity caused by electroconvulsive shock. Neurochem Res 31:877–881. doi:10.1007/s11064-006-9091-1

    Article  PubMed  CAS  Google Scholar 

  66. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders DSM-IV-TR (4th edn, text revision). American Psychiatric Association, Washington

    Book  Google Scholar 

  67. McGlashan TH, Fenton WS (1992) The positive/negative distinction in schizophrenia: review of natural history validators. Arch Gen Psychiatry 49:63–72

    PubMed  CAS  Google Scholar 

  68. Dror N, Karry R, Mazor M et al (2002) State dependent alterations in mitochondrial complex I activity in platelets: A potential peripheral marker for schizophrenia. Mol Psychiatry 7:995–1001. doi:10.1038/sj.mp.4001116

    Article  PubMed  CAS  Google Scholar 

  69. Tamminga CA, Thaker GK, Buchanan R et al (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49:522–530

    PubMed  CAS  Google Scholar 

  70. Hazlett EA, Buchsbaum MS, Byne W et al (1999) Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am J Psychiatry 156:1190–1199

    PubMed  CAS  Google Scholar 

  71. Chua SE, McKenna PJ (1995) Schizophrenia: A brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br J Psychiatry 166:563–582

    Article  PubMed  CAS  Google Scholar 

  72. Andreasen NC, O’Leary DS, Flaum M et al (1997) Hypofrontality in schizophrenia: disturbed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734. doi:10.1016/S0140-6736(96)08258-X

    Article  PubMed  CAS  Google Scholar 

  73. Buchsbaum MS, Hazlett EA (1998) Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr Bull 24:343–346

    PubMed  CAS  Google Scholar 

  74. Prince JA, Blennow K, Gottfries CG et al (1999) Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 21:372–379. doi:10.1016/S0893-133X(99)00016-0

    Article  PubMed  CAS  Google Scholar 

  75. Fujimoto T, Nakano T, Takano T et al (1992) Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging. Acta Psychiatr Scand 86:455–462. doi:10.1111/j.1600-0447.1992.tb03297.x

    Article  PubMed  CAS  Google Scholar 

  76. Kegeles LS, Humaran TJ, Mann JJ (1998) In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry 44:382–398

    Google Scholar 

  77. Volz HR, Riehemann S, Maurer I et al (2000) Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol Psychiatry 47:954–961. doi:10.1016/S0006-3223(00)00235-3

    Article  PubMed  CAS  Google Scholar 

  78. Uranova N, Orlovskaya D, Vikhreva O et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610. doi:10.1016/S0361-9230(01)00528-7

    Article  PubMed  CAS  Google Scholar 

  79. Ben-Shachar D (2002) Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 83:1241–1251. doi:10.1046/j.1471-4159.2002.01263.x

    Article  PubMed  CAS  Google Scholar 

  80. Uranova NA, Aganova EA (1989) Ultrastructure of synapses of the anterior limbic cortex in schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 89:56–59

    PubMed  CAS  Google Scholar 

  81. Kung L, Roberts RC (1999) Mitochondrial pathology in human schizophrenic striatum: a post-mortem ultrastructural study. Synapse 31:67–75. doi:10.1002/(SICI)1098-2396(199901)31:1<67::AID-SYN9>3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  82. Ozawa T (1998) Mitochondrial DNA mutations and age. Ann NY Acad Sci 854:128–154. doi:10.1111/j.1749-6632.1998.tb09898.x

    Article  PubMed  CAS  Google Scholar 

  83. Kakiuchi C, Ishiwata M, Kametani M et al (2005) Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int J Neuropsychopharmacol 8:515–522. doi:10.1017/S1461145705005213

    Article  PubMed  CAS  Google Scholar 

  84. Frey BN, Valvassori SS, Reus GZ et al (2006) Changes in antioxidant defense enzymes after D-amphetamine exposure: implications as an animal model of mania. Neurochem Res 31:699–703. doi:10.1007/s11064-006-9070-6

    Article  PubMed  CAS  Google Scholar 

  85. Maurer I, Zierz S, Moller HJ (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48:125–136. doi:10.1016/S0920-9964(00)00075-X

    Article  PubMed  CAS  Google Scholar 

  86. Ben-Shachar D, Zuk R, Gazawi H et al (1999) Increased mitochondrial complex I activity in platelets of schizophrenia patients. Int J Neuropsychopharmacol 2:245–253. doi:10.1017/S1461145799001649

    Article  PubMed  CAS  Google Scholar 

  87. Covington MA, Riedel WJ, Brown C et al (2007) Does ketamine mimic aspects of schizophrenic speech? J Psychopharmacol 21:338–346. doi:10.1177/0269881107077729

    Article  PubMed  CAS  Google Scholar 

  88. Perova T, Wasserman MJ, Warsh JJ (2008) Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. Int J Neuropsychopharmacol 11:185–196. doi:10.1017/S1461145707007973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UNESC (Brazil), FAPESC (Brazil) and CNPq (Brazil) that supported the studies of our group that are cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezin, G.T., Amboni, G., Zugno, A.I. et al. Mitochondrial Dysfunction and Psychiatric Disorders. Neurochem Res 34, 1021–1029 (2009). https://doi.org/10.1007/s11064-008-9865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9865-8

Keywords

Navigation