Skip to main content
Log in

Fenproporex Increases Locomotor Activity and Alters Energy Metabolism, and Mood Stabilizers Reverse These Changes: a Proposal for a New Animal Model of Mania

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Fenproporex (Fen) is converted in vivo into amphetamine, which is used to induce mania-like behaviors in animals. In the present study, we intend to present a new animal model of mania. In order to prove through face, construct, and predictive validities, we evaluated behavioral parameters (locomotor activity, stereotypy activity, and fecal boli amount) and brain energy metabolism (enzymes citrate synthase; malate dehydrogenase; succinate dehydrogenase; complexes I, II, II–III, and IV of the mitochondrial respiratory chain; and creatine kinase) in rats submitted to acute and chronic administration of fenproporex, treated with lithium (Li) and valproate (VPA). The administration of Fen increased locomotor activity and decreased the activity of Krebs cycle enzymes, mitochondrial respiratory chain complexes, and creatine kinase, in most brain structures evaluated. In addition, treatment with mood stabilizers prevented and reversed this effect. Our results are consistent with the literature that demonstrates behavioral changes and mitochondrial dysfunction caused by psychostimulants. These findings suggest that chronic administration of Fen may be a potential animal model of mania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bunney WEJ, Garland-Bunney BL (1987) Mechanisms of action of lithium in affective illness: basic and clinical implications. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 553–565

    Google Scholar 

  2. Post RM, Jimerson DC, Bunney WE Jr, Goodwin FK (1980) Dopamine and mania: behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology (Berl) 67:297–305

    Article  CAS  Google Scholar 

  3. Fisher G, Pelonero AL, Ferguson C (1991) Mania precipitated by prednisone and bromocriptine. Gen Hosp Psychiatry 13:345–346

    Article  CAS  PubMed  Google Scholar 

  4. Peet M, Peters S (1995) Drug-induced mania. Drug Saf 12:146–153

    Article  CAS  PubMed  Google Scholar 

  5. Sultzer DL, Cummings JL (1989) Drug-induced mania—causative agents, clinical characteristics and management. A retrospective analysis of the literature. Med Toxicol Adverse Drug Exp 4:127–143

    Article  CAS  PubMed  Google Scholar 

  6. Davis LL, Bartolucci A, Petty F (2005) Divalproex in the treatment of bipolar depression: a placebo-controlled study. J Affect Disord 85:259–266

    Article  CAS  PubMed  Google Scholar 

  7. Squassina A, Manchia M, Del Zompo M (2010) Pharmacogenomics of mood stabilizers in the treatment of bipolar disorder. Hum Genomics Proteomics 3:597–661

    Google Scholar 

  8. Cohen PA (2009) Imported fenproporex-based diet pills from Brazil: a report of two cases. J Gen Intern Med 24:430–433

    Article  PubMed Central  PubMed  Google Scholar 

  9. Cody JT, Valtier S, Stillman S (1999) Amphetamine and fenproporex levels following multidose administration of fenproporex. J Anal Toxicol 23:187–194

    Article  CAS  PubMed  Google Scholar 

  10. Coutts RT, Nazarali AJ, Baker GB, Pasutto FM (1986) Metabolism and disposition of N-(2-cyanoethyl)-amphetamine (fenproporex) and amphetamine: study in the rat brain. Can J Physiol Pharmacol 64:724–728

    Article  CAS  PubMed  Google Scholar 

  11. Mattei R, Carlini EA (1996) A comparative study of the anorectic and behavioral effects of fenproporex on male and female rats. Braz J Med Biol Res 29:1025–1030

    CAS  PubMed  Google Scholar 

  12. Pélissier-alicot AL, Piercecchi-marti MD, Bartoli C, Kuhlmann E, Coiffait PE, Sanvoisin A, Giocanti D, Léonetti G (2006) Abusive prescription of psychostimulants: a study of two cases. J Forensic Sci 51:407–410

    Article  PubMed  Google Scholar 

  13. Colman E (2005) Anorectics on trial: a half century of federal regulation of prescription appetite suppressants. Ann Intern Med 143:380–385

    Article  PubMed  Google Scholar 

  14. Frey BN, Martins MR, Petronilho FC, Dal-Pizzol F, Quevedo J, Kapczinski F (2006) Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord 8:275–280

    Article  CAS  PubMed  Google Scholar 

  15. Valvassori SS, Petronilho FC, Réus GZ, Steckert AV, Oliveira VB, Boeck CR, Kapczinski F, Dal-Pizzol F, Quevedo J (2008) Effect of N-acetylcysteine and/or deferoxamine on oxidative stress and hyperactivity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 32:1064–1068

    Article  CAS  PubMed  Google Scholar 

  16. Jiménez A, Jordà EG, Verdaguer E, Pubill D, Sureda FX, Canudas AM, Escubedo E, Camarasa J, Camins A, Pallàs M (2004) Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells. Toxicol Appl Pharmacol 196:223–234

    Article  PubMed  Google Scholar 

  17. Oliveira MT, Rego AC, Macedo TR, Oliveira CR (2003) Drugs of abuse induce apoptotic features in PC12 cells. Ann N Y Acad Sci 1010:667–670

    Article  CAS  PubMed  Google Scholar 

  18. Cunha-Oliveira T, Rego AC, Cardoso SM, Borges F, Swerdlow RH, Macedo T, de Oliveira CR (2006) Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Res 1089:44–54

    Article  CAS  PubMed  Google Scholar 

  19. Calabrese V, Scapagnini G, Giuffrida Stella AM, Bates TE, Clark JB (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26:739–764

    Article  CAS  PubMed  Google Scholar 

  20. Kelly DP, Gordon JI, Alpers R, Strauss AW (1989) The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem 264:18921–18925

    CAS  PubMed  Google Scholar 

  21. Bessman SP, Carpenter CL (1985) The creatine–creatine phosphate energy shuttle. Annu Rev Biochem 54:831–865

    Article  CAS  PubMed  Google Scholar 

  22. Schnyder T, Winkler H, Gross H, Eppenberger HM, Wallimann T (1991) Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem 266:5318–5322

    CAS  PubMed  Google Scholar 

  23. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    CAS  PubMed Central  PubMed  Google Scholar 

  24. El-Mallakh RS, El-Masri MA, Huff MO, Li XP, Decker S, Levy RS (2003) Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar Disord 5:362–365

    Article  CAS  PubMed  Google Scholar 

  25. Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res 1097:224–229

    Article  CAS  PubMed  Google Scholar 

  26. Geyer MA, Markou A (2002) The role of preclinical models in the development of psychotropic drugs. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Pennsylvania, pp 445–455

    Google Scholar 

  27. Riegel RE, Valvassori SS, Elias G, Réus GZ, Steckert AV, de Souza B, Petronilho F, Gavioli EC, Dal-Pizzol F, Quevedo J (2009) Animal model of mania induced by ouabain: evidence of oxidative stress in submitochondrial particles of the rat brain. Neurochem Int 55:491–495

    Article  CAS  PubMed  Google Scholar 

  28. Rezin GT, Scaini G, Ferreira GK, Cardoso MR, Gonçalves CL, Constantino LS, Deroza PF, Ghedim FV, Valvassori SS, Resende WR, Quevedo J, Zugno AI, Streck EL (2012) Inhibition of acetylcholinesterase activity in brain and behavioral analysis in adult rats after chronic administration of fenproporex. Metab Brain Dis 27:453–458

    Article  CAS  PubMed  Google Scholar 

  29. Ericson E, Samuelsson J, Ahlenius S (1991) Photocell measurements of rat motor activity. A contribution to sensitivity and variation in behavioral observations. J Pharmacol Methods 25:111–122

    Article  CAS  PubMed  Google Scholar 

  30. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  CAS  PubMed  Google Scholar 

  31. Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102

    Article  CAS  PubMed  Google Scholar 

  32. Kalueff AV, Tuohimaa P (2004) Grooming analysis algorithm for neurobehavioural stress research. Brain Res 13:151–158

    Google Scholar 

  33. Kalueff AV, Tuohimaa P (2005) The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods 143:169–177

    Article  PubMed  Google Scholar 

  34. Kalueff AV, Aldridge JW, LaPorte JL, Murphy DL, Tuohimaa P (2007) Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2:2538–2544

    Article  CAS  PubMed  Google Scholar 

  35. Casarrubea M, Sorbera F, Crescimanno G (2008) Multivariate analysis of the modifications induced by an environmental acoustic cue on rat exploratory behavior. Physiol Behav 93:687–696

    Article  CAS  PubMed  Google Scholar 

  36. Casarrubea M, Sorbera F, Crescimanno G (2009) Structure of rat behavior in holeboard: I. Multivariate analysis of response to anxiety. Physiol Behav 96:174–179

    Article  CAS  PubMed  Google Scholar 

  37. Casarrubea M, Sorbera F, Crescimanno G (2009) Structure of rat behavior in holeboard: II. Multivariate analysis of modifications induced by diazepam. Physiol Behav 96:683–692

    Article  CAS  PubMed  Google Scholar 

  38. Meyerson BJ, Höglund AU (1981) Exploratory and socio-sexual behaviour in the male laboratory rat: a methodological approach for the investigation of drug action. Acta Pharmacol Toxicol (Copenh) 48:168–180

    Article  CAS  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  40. Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114:597–610

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Kitto GB (1969) Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol 13:106–116

    Article  CAS  Google Scholar 

  42. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26

    Article  CAS  PubMed  Google Scholar 

  43. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  44. Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  45. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera. Clin Chim Acta 7:597–604

    Article  CAS  PubMed  Google Scholar 

  46. Hyman SE (1996) Addiction to cocaine and amphetamine. Neuron, Cambridge, pp 901–904

    Google Scholar 

  47. Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspective for the development of animals models of bipolar disorders. Prog Neuropsychopharmacol Biol Psychiatry 28:209–224

    Article  PubMed  Google Scholar 

  48. Post RM, Weiss SR (1996) A speculative model of affective illness cyclicity based on patterns of drug tolerance observed in amygdale kindled seizures. Mol Neurobiol 13:33–60

    Article  CAS  PubMed  Google Scholar 

  49. Shaldivin A, Kaptsan A, Belmaker RH, Einat H, Grisaru N (2001) Transcranial magnetic stimulation in an amphetamine hyperactivity model of mania. Bipolar Disord 3:30–34

    Article  CAS  PubMed  Google Scholar 

  50. Gould TJ, Keith RA, Bhat RV (2001) Differential sensitivity to lithium's reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 118:95–105

    Article  CAS  PubMed  Google Scholar 

  51. Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang DR, Huang Y, Cooper T, Kegeles L, Zarahn E, Abi-Dargham A, Haber SN, Laruelle M (2003) Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23:285–300

    Article  CAS  PubMed  Google Scholar 

  52. Pantazopoulos H, Stone D, Walsh J, Benes FM (2004) Differences in the cellular distribution of D1 receptor mRNA in the hippocampus of bipolars and schizophrenics. Synapse 54:147–155

    Article  CAS  PubMed  Google Scholar 

  53. Vogel M, Pfeifer S, Schaub RT, Grabe HJ, Barnow S, Freyberger HJ, Cascorbi I (2004) Decreased levels of dopamine D3 receptor mRNA in schizophrenic and bipolar patients. Neuropsychobiology 50:305–310

    Article  CAS  PubMed  Google Scholar 

  54. Zhu J, Reith ME (2008) Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurol Disord Drug Targets 7:393–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Einat H, Yuan P, Szabo ST, Dogra S, Manji HK (2007) Protein kinase C inhibition by tamoxifen antagonizes manic-like behavior in rats: implications for the development of novel therapeutics for bipolar disorder. Neuropsychobiology 55:123–131

    Article  CAS  PubMed  Google Scholar 

  56. Saito K, Kasai T, Nagura Y, Ito H, Kanazaw M, Fukudo S (2005) Corticotropin-releasing hormone receptor 1 antagonist blocks brain–gut activation induced by colonic distention in rats. Gastroenterology 129:1533–1543

    Article  CAS  PubMed  Google Scholar 

  57. Taché Y, Martínez V, Million M, Rivier J (1999) Corticotropin-releasing factor and the brain-gut motor response to stress. Can J Gastroenterol 13:18A–25A

    PubMed  Google Scholar 

  58. Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT (1997) Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic like behavior. Regul Pept 71:15–21

    Article  CAS  PubMed  Google Scholar 

  59. Pringle RB, Mouw NJ, Lukkes JL, Forster GL (2008) Amphetamine treatment increases corticotropin-releasing factor receptors in the dorsal raphe nucleus. Neurosci Res 62:62–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Bachmann RF, Wang Y, Yuan P, Zhou R, Li X, Alesci S, Du J, Manji HK (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12:805–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Corrêa C, Amboni G, Assis LC, Martins MR, Kapczinski F, Streck EL, Quevedo J (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 31:887–891

    Article  PubMed  Google Scholar 

  62. Moretti M, Valvassori SS, Steckert AV, Rochi N, Benedet J, Scaini G, Kapczinski F, Streck EL, Zugno AI, Quevedo J (2011) Tamoxifen effects on respiratory chain complexes and creatine kinase activities in an animal model of mania. Pharmacol Biochem Behav 98:304–310

    Article  CAS  PubMed  Google Scholar 

  63. Streck EL, Amboni G, Scaini G, Di-Pietro PB, Rezin GT, Valvassori SS, Luz G, Kapczinski F, Quevedo J (2008) Brain creatine kinase activity in an animal model of mania. Life Sci 82:424–429

    Article  CAS  PubMed  Google Scholar 

  64. Valenzuela A, Pla A, Villanueva E (1987) Effects of chronic administration of dextroamphetamine on enzymes of energy metabolism in regions of the rat brain. Neuropharmacology 26:627–631

    Article  CAS  PubMed  Google Scholar 

  65. Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 14:903–909

    Article  Google Scholar 

  66. Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11–18

    Article  CAS  PubMed  Google Scholar 

  67. Cadet JL, Jayanthi S, Deng X (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Neurotox Res 8:199–206

    Article  CAS  PubMed  Google Scholar 

  68. Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL (2002) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 42:837–845

    Article  CAS  PubMed  Google Scholar 

  69. Andreazza AC, Kauer-Sant'Anna M, Frey BN, Stertz L, Zanotto C, Ribeiro L, Giasson K, Valvassori SS, Réus GZ, Salvador M, Quevedo J, Gonçalves CA, Kapczinski F (2008) Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci 33:516–524

    PubMed Central  PubMed  Google Scholar 

  70. Lai YL, Rodarte JR, Hyatt RE (1977) Effect of body position on lung emptying in recumbent anesthetized dogs. J Appl Physiol 43:983–987

    CAS  PubMed  Google Scholar 

  71. Sims DE (1991) Recent advances in pericyte biology—implications for health and disease. Can J Cardiol 7:431–443

    CAS  PubMed  Google Scholar 

  72. Sonnewald U, Hertz L, Schousboe A (1998) Mitochondrial heterogeneity in the brain at the cellular level. J Cereb Blood Flow Metab 18:231–237

    Article  CAS  PubMed  Google Scholar 

  73. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449

    Article  CAS  PubMed  Google Scholar 

  74. White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51:141–153

    Article  CAS  PubMed  Google Scholar 

  75. Fountoulakis KN, Kasper S, Andreassen O, Blier P, Okasha A, Severus E, Versiani M, Tandon R, Möller HJ, Vieta E (2012) Efficacy of pharmacotherapy in bipolar disorder: a report by the WPA section on pharmacopsychiatry. Eur Arch Psychiatry Clin Neurosci 262(Suppl 1):1–48

    Article  PubMed  Google Scholar 

  76. Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    PubMed Central  PubMed  Google Scholar 

  77. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  CAS  PubMed  Google Scholar 

  78. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Cell Physiol 292:670–686

    Article  Google Scholar 

  79. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2008) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029

    Article  PubMed  Google Scholar 

  80. Bowtell JL, Marwood S, Bruce M, Constantin-Teodosiu D, Greenhaff PL (2007) Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle. Sports Med 37:1071–1088

    Article  PubMed  Google Scholar 

  81. Rex A, Schickert R, Fink H (2004) Antidepressant-like effect of nicotinamide adenine dinucleotide in the forced swim test in rats. Pharmacol Biochem Behav 77:303–307

    Article  CAS  PubMed  Google Scholar 

  82. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  83. MacDonald ML, Naydenov A, Chu M, Matzilevich D, Konradi C (2006) Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder. Bipolar Disord 8:255–264

    Article  CAS  PubMed  Google Scholar 

  84. Campbell S, Macqueen G (2004) The role of hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 29:417–426

    PubMed Central  PubMed  Google Scholar 

  85. Zugno AI, Valvassori SS, Scherer EB, Mattos C, Matté C, Ferreira CL, Rezin GT, Wyse AT, Quevedo J, Streck EL (2009) Na+, K+-ATPase activity in an animal model of mania. J Neural Transm 116:431–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Programa de Pós-graduação em Ciências da Saúde–Universidade do Extremo Sul Catarinense (UNESC), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina NENASC project, Conselho Nacional de Desenvolvimento Científico e Tecnológico (PRONEX-FAPESC/CNPq), and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezin, G.T., Furlanetto, C.B., Scaini, G. et al. Fenproporex Increases Locomotor Activity and Alters Energy Metabolism, and Mood Stabilizers Reverse These Changes: a Proposal for a New Animal Model of Mania. Mol Neurobiol 49, 877–892 (2014). https://doi.org/10.1007/s12035-013-8566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8566-8

Keywords

Navigation