Skip to main content
Log in

Protection of the Developing Brain with Anthocyanins Against Ethanol-Induced Oxidative Stress and Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oxidative stress has been implicated in the pathophysiology of several neurodegenerative disorders. Numerous studies have reported that ethanol exposure produces reactive oxygen species (ROS), one of the best-known molecular mechanisms of ethanol neurotoxicity. We recently reported gamma-aminobutyric acid B1 receptor (GABAB1R)-dependent protection by anthocyanins against ethanol-induced apoptosis in prenatal hippocampal neurons. Here, we examined the effect of anthocyanin neuroprotection against ethanol in the hippocampus of the postnatal day-7 rat brain. After 4 h of ethanol administration, either alone or together with anthocyanin, the expression of glutamate receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs)), intracellular signaling molecules, and various synaptic, inflammatory, and apoptotic markers was evaluated. The results suggest that anthocyanins significantly reversed the ethanol-induced inhibition of glutamatergic neurotransmission, synaptic dysfunction, GABAB1R activation, and neuronal apoptosis by stimulating the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/v-akt murine thymoma viral oncogene (Akt)/glycogen synthase kinase 3 beta (GSK3β) pathway in the hippocampus of postnatal rat brain. Anthocyanins also inhibited the ethanol-activated expression of phosphorylated c-Jun N terminal kinase (p-JNK), phospho-nuclear factor kappa B (p-NF-κB), cyclooxygenase 2 (COX-2), as well as attenuating neuronal apoptosis in the hippocampal CA1, CA3 and DG regions of the developing rat brain. Furthermore, anthocyanins increased cell viability, attenuated ethanol-induced PI3K-dependent ROS production, cytotoxicity, and caspase-3/7 activation in vitro. In conclusion, these results suggest that anthocyanins are beneficial against ethanol abuse during brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ikonomidou C et al (2000) Ethanol-induced apoptotic neurodegeneration and the fetal alcohol syndrome. Science 287:1056–1060

    Article  CAS  PubMed  Google Scholar 

  2. Ikonomidou C et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    Article  CAS  PubMed  Google Scholar 

  3. Jevtovic-Todorovic V et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    CAS  PubMed  Google Scholar 

  4. Clarren SK, Smith DW (1978) The fetal alcohol syndrome. N Engl J Med 298:1063–1067

    Article  CAS  PubMed  Google Scholar 

  5. Guerri C (1998) Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res 22:304–312

    Article  CAS  PubMed  Google Scholar 

  6. Barnes DE, Walker DW (1981) Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain Res 227:333–340

    Article  CAS  PubMed  Google Scholar 

  7. Farr KL et al (1988) Prenatal ethanol exposure decreases hippocampal 3H-glutamate binding in 45-day-old rats. Alcohol 5:125–133

    Article  CAS  PubMed  Google Scholar 

  8. Heaton MB et al (1995) Prenatal ethanol exposure alters neurotrophic activity in the developing rat hippocampus. Neurosci Lett 188:132–136

    Article  CAS  PubMed  Google Scholar 

  9. Xu J (2003) Ethanol impairs insulin-stimulated neuronal survival in the developing brain: role of PTEN phosphatase. J Biol Chem 278:26929–26937

    Article  CAS  PubMed  Google Scholar 

  10. Zhang FX et al (1998) N-methyl-D-aspartate inhibits apoptosis through activation of phosphatidylinositol 3-kinase in cerebellar granule neurons. A role for insulin receptor substrate-1 in the neurotrophic action of N-methyl-D-aspartate and its inhibition by ethanol. J Biol Chem 273:26596–26602

    Article  CAS  PubMed  Google Scholar 

  11. Bhave SV et al (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J Neurosci 19:3277–3286

    CAS  PubMed  Google Scholar 

  12. Crews FT, Nixon K (2009) Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol 44:115–127

    Article  CAS  Google Scholar 

  13. Haorah J et al (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45:1542–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hampton MB, Orrenius S (1998) Redox regulation of apoptotic cell death. Biofactors 8:1–5

    Article  CAS  PubMed  Google Scholar 

  15. Cohen-Kerem R, Koren G (2003) Antioxidants and fetal protection against ethanol teratogenicity. I. Review of the experimental data and implications to humans. Neurotoxicol Teratol 25:1–9

    Article  CAS  PubMed  Google Scholar 

  16. Duthie G et al (2000) Plant polyphenols in cancer and heart diseases: implication as nutritional antioxidants. Nutrition Res Rev 13:79–106

    Article  CAS  Google Scholar 

  17. Chen G, Luo J (2010) Anthocyanins: are they beneficial in treating ethanol neurotoxicity? Neurotox Res 17:91–101

    Article  CAS  PubMed  Google Scholar 

  18. Rivero-Perez MD et al (2008) Contribution of anthocyanin fraction to the antioxidant properties of wine. Food Chem Toxicol 46:2815–2822

    Article  CAS  PubMed  Google Scholar 

  19. Assuncao M et al (2007) Red wine antioxidants protect hippocampal neurons against ethanol-induced damage: a biochemical, morphological and behavioral study. Neuroscience 146:1581–1592

    Article  CAS  PubMed  Google Scholar 

  20. Shah SA et al (2013) Anthocyanins protect against ethanol-induced neuronal apoptosis via GABAB1 receptors intracellular signaling in prenatal rat hippocampal neurons. Mol Neurobiol 48:257–269

    Article  Google Scholar 

  21. Olney JW et al (2002) Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Develop Brain Research 133:115–126

    Article  CAS  Google Scholar 

  22. Shah SA et al (2014) Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death and Disease 5:e1026. doi:10.1038/cddis.2013.538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Koh PO (2013) Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression. Synapse 67:390–398

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari V et al (2012) Attenuation of NF-κB mediated apoptotic signaling by tocotrienol ameliorates cognitive deficits in rats postnatally exposed to ethanol. Neurochemi Intern 61:310–320

    Article  CAS  Google Scholar 

  25. Sowell ER (2002) Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb Cortex 12:856–865

    Article  PubMed  Google Scholar 

  26. Sowell ER (2001) Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. Neuro Report 12:515–523

    CAS  Google Scholar 

  27. Sowell ER (2002) Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. Neuro Image 17:1807–1819

    PubMed  Google Scholar 

  28. Mattson SN, Riley EP (1998) A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res 22:279–294

    Article  CAS  PubMed  Google Scholar 

  29. La GL (1999) Protective effects of the flavonoid mixture, silymarin, on fetal rat brain and liver. J Ethnopharmacol 65:53–61

    Article  Google Scholar 

  30. Antonio AM, Druse MJ (2008) Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons. Brain Res 1204:16–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208

    CAS  PubMed  Google Scholar 

  32. Zafra-Stone S (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675–683

    Article  CAS  PubMed  Google Scholar 

  33. Chen G et al (2009) Cyanidin-3-glucoside reverses ethanol-induced inhibition of neurite outgrowth: role of glycogen synthase kinase 3 beta. Neuroto Res 15:321–331

    Article  CAS  Google Scholar 

  34. Li CY (2008) Gastroprotective effect of cyanidin 3-glucoside on ethanol-induced gastric lesions in rats. Alcohol 42:683–687

    Article  CAS  PubMed  Google Scholar 

  35. Luo J (2009) GSK-3 beta in ethanol neurotoxicity. Mol Neurobiol 40:108–121

    Article  CAS  PubMed  Google Scholar 

  36. Crews F (2006) BHT blocks NF-κB activation and ethanol-induced brain damage. Alcohol Clin Ex Res 30:1938–1949

    Article  CAS  Google Scholar 

  37. Izumi Y et al (2005) A single day of ethanol exposure during development has persistent effects on bi-directional plasticity, N-methyl-D-aspartate receptor function and ethanol sensitivity. Neuroscience 136:269–279

    Article  CAS  PubMed  Google Scholar 

  38. Henderson GI (1999) Ethanol, oxidative stress, reactive aldehydes, and the fetus. Front Biosci 4:541–550

    Article  Google Scholar 

  39. Abel EL, Hannigan JH (1995) Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicol Teratol 17:445–462

    Article  CAS  PubMed  Google Scholar 

  40. Shirpoor A et al (2009) Protective effect of vitamin E against ethanol-induced hyperhomocysteinemia, DNA damage, and atrophy in the developing male rat brain. Alcohol Clin Exp Res 33:1181–1186

    Article  CAS  PubMed  Google Scholar 

  41. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  CAS  PubMed  Google Scholar 

  42. Crair MC, Malenka RC (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375:325–328

    Article  CAS  PubMed  Google Scholar 

  43. Durand GM et al (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381:71–75

    Article  CAS  PubMed  Google Scholar 

  44. Kerchner GA, Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neu 9:813–825

    Article  CAS  Google Scholar 

  45. Mameli M et al (2005) Developmentally regulated actions of alcohol on hippocampal glutamatergic transmission. J Neurosci 25:8027–8036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2012-0009521).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong Ok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.A., Yoon, G.H. & Kim, M.O. Protection of the Developing Brain with Anthocyanins Against Ethanol-Induced Oxidative Stress and Neurodegeneration. Mol Neurobiol 51, 1278–1291 (2015). https://doi.org/10.1007/s12035-014-8805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8805-7

Keywords

Navigation