Skip to main content

Advertisement

Log in

Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease. The major characteristics of PD include the loss of dopaminergic neurons in the substantia nigra and Lewy body depositions. Genetic defects, environment toxicants, and aging have been recognized as risk factors for the development of PD. Currently, although the pathogenesis of PD is still obscure, overwhelming evidence demonstrates that oxidative stress plays a central role in the progress of PD. Reactive oxygen species (ROS) function mainly through chemical reactions with atomic targets that lead to covalent oxidative modifications. Through the oxidative modification of ions, amino acids, amines, and nucleic acids, ROS exert augmented effects on the structures and functions of multiple macromolecules. These oxidative modifications can affect nucleic acid stability by oxidizing RNA, increasing mitochondrial DNA (mtDNA) mutation, and launching translesion synthesis (TLS); disturb protein homeostasis by accelerating α-synuclein aggregation, parkin aggregation, and proteasome dissociation; modulate dopamine release by activating ATP-sensitive potassium channels (KATP) and inactivating neuronal nicotinic acetylcholine receptors (nAChRs); and influence cellular self-defenses by promoting the cytoprotective effects of DJ-1 and PTEN-induced putative kinase 1 (PINK1) while inducing Akt dysregulation. Based on the above facts, we propose that various oxidative modifications may affect nucleic acid stability, protein homeostasis, the functionality of ion channels, and cellular self-defenses and that these processes lead to protein misfolding, dopamine depletion, and further neuronal death in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Mayeux R, Stern Y, Rosen J, Leventhal J (1981) Depression, intellectual impairment, and Parkinson disease. Neurology 31(6):645–650

    Article  CAS  PubMed  Google Scholar 

  2. Greenamyre JT, Hastings TG (2004) Parkinson’s: divergent causes, convergent mechanisms. Science 304(5674):1120–1122

    Article  CAS  PubMed  Google Scholar 

  3. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  4. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108. doi:10.1038/ng0298-106

    Article  CAS  PubMed  Google Scholar 

  5. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173. doi:10.1002/ana.10795

    Article  CAS  PubMed  Google Scholar 

  6. International Parkinson Disease Genomics C, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjornsdottir S, Stefansson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649. doi:10.1016/S0140-6736(10)62345-8

    Article  CAS  Google Scholar 

  7. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993. doi:10.1038/ng.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31(7):763–780. doi:10.1002/humu.21277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cruts M, Theuns J, Van Broeckhoven C (2012) Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33(9):1340–1344. doi:10.1002/humu.22117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535. doi:10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  11. Simon DK, Pulst SM, Sutton JP, Browne SE, Beal MF, Johns DR (1999) Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation. Neurology 53(8):1787–1793

    Article  CAS  PubMed  Google Scholar 

  12. Zapico SC, Ubelaker DH (2013) mtDNA mutations and their role in aging, diseases and forensic sciences. Aging Dis 4(6):364–380

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608. doi:10.1038/33416

    Article  CAS  PubMed  Google Scholar 

  14. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395(6701):451–452. doi:10.1038/26652

    Article  CAS  PubMed  Google Scholar 

  15. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259. doi:10.1126/science.1077209

    Article  CAS  PubMed  Google Scholar 

  16. Shen J, Cookson MR (2004) Mitochondria and dopamine: new insights into recessive parkinsonism. Neuron 43(3):301–304. doi:10.1016/j.neuron.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  17. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci : CMLS 65(7–8):1272–1284. doi:10.1007/s00018-008-7589-1

    Article  CAS  PubMed  Google Scholar 

  18. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Park Dis 3(4):461–491. doi:10.3233/JPD-130230

    CAS  Google Scholar 

  19. Liu M, Bing G (2011) Lipopolysaccharide animal models for Parkinson’s disease. Park Dis 2011:327089. doi:10.4061/2011/327089

    Google Scholar 

  20. Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44(11):1873–1886. doi:10.1016/j.freeradbiomed.2008.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao HM, Hong JS (2011) Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol 94(1):1–19. doi:10.1016/j.pneurobio.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  24. Kudo H, Kokunai T, Kondoh T, Tamaki N, Matsumoto S (1990) Quantitative analysis of glutathione in rat central nervous system: comparison of GSH in infant brain with that in adult brain. Brain Res 511(2):326–328

    Article  CAS  PubMed  Google Scholar 

  25. Das KC, White CW (2002) Redox systems of the cell: possible links and implications. Proc Natl Acad Sci U S A 99(15):9617–9618. doi:10.1073/pnas.162369199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879. doi:10.1089/ars.2006.8.1865

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh D, LeVault KR, Barnett AJ, Brewer GJ (2012) A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons. J Neurosci 32(17):5821–5832. doi:10.1523/Jneurosci.6192-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36(3):356–361. doi:10.1002/ana.410360306

    Article  CAS  PubMed  Google Scholar 

  29. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25. doi:10.1016/j.freeradbiomed.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124. doi:10.3389/fnagi.2015.00124

    Google Scholar 

  31. Qin L, Liu Y, Hong JS, Crews FT (2013) NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61(6):855–868. doi:10.1002/glia.22479

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang CM, Hsieh HL, Lin CC, Shih RH, Chi PL, Cheng SE, Hsiao LD (2013) Multiple factors from bradykinin-challenged astrocytes contribute to the neuronal apoptosis: involvement of astroglial ROS, MMP-9, and HO-1/CO system. Mol Neurobiol 47(3):1020–1033. doi:10.1007/s12035-013-8402-1

    Article  CAS  PubMed  Google Scholar 

  33. Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44(10):1787–1794. doi:10.1016/j.freeradbiomed.2008.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szabo-Taylor K, Ryan B, Osteikoetxea X, Szabo TG, Sodar B, Holub M, Nemeth A, Paloczi K et al (2015) Oxidative and other posttranslational modifications in extracellular vesicle biology. Semin Cell Dev Biol 40:8–16. doi:10.1016/j.semcdb.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  35. Farooqui AA, Ong W-Y, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer

  36. Farooqui AA (2011) Neurochemical aspects in inflammation in brain. Molecular Aspects of Neurodegeneration and Neuroprotection:13–29

  37. Sareila O, Kelkka T, Pizzolla A, Hultqvist M, Holmdahl R (2011) NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal 15(8):2197–2208

    Article  CAS  PubMed  Google Scholar 

  38. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344. doi:10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Labunskyy VM, Gladyshev VN (2013) Role of reactive oxygen species-mediated signaling in aging. Antioxid Redox Signal 19(12):1362–1372. doi:10.1089/ars.2012.4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106(1):1–29. doi:10.1016/S0009-3084(00)00128-6

    Article  CAS  PubMed  Google Scholar 

  41. Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer

  42. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361. doi:10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Bio 8(10):813–824. doi:10.1038/Nrm2256

    Article  CAS  Google Scholar 

  44. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. doi:10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  45. Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47(9):1282–1293. doi:10.1016/j.freeradbiomed.2009.05.026

    Article  CAS  PubMed  Google Scholar 

  46. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 13(5):730–737

    Article  CAS  PubMed  Google Scholar 

  47. Fimognari C (2015) Role of oxidative RNA damage in chronic-degenerative diseases. Oxid Med Cell Longev 2015:358713. doi:10.1155/2015/358713

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci U S A 104(1):66–71. doi:10.1073/pnas.0609737104

    Article  CAS  PubMed  Google Scholar 

  49. Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425(6959):717–720. doi:10.1038/nature01979

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154(5):1423–1429. doi:10.1016/S0002-9440(10)65396-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ et al (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9(2):244–248. doi:10.1006/nbdi.2002.0466

    Article  CAS  PubMed  Google Scholar 

  52. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135–141. doi:10.1038/Nature00991

    Article  CAS  PubMed  Google Scholar 

  53. Woo DK, Green PD, Santos JH, D’Souza AD, Walther Z, Martin WD, Christian BE, Chandel NS et al (2012) Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am J Pathol 180(1):24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Enright H, Miller WJ, Hays R, Floyd RA, Hebbel RP (1996) Preferential targeting of oxidative base damage to internucleosomal DNA. Carcinogenesis 17(5):1175–1177

    Article  CAS  PubMed  Google Scholar 

  55. Nohl H, Gille L, Staniek K (2005) Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69(5):719–723. doi:10.1016/j.bcp.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  56. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320(5876):661–664

    Article  CAS  PubMed  Google Scholar 

  57. Lagouge M, Larsson NG (2013) The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med 273(6):529–543. doi:10.1111/joim.12055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hroudova J, Singh N, Fisar Z (2014) Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014:175062. doi:10.1155/2014/175062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106:17–32. doi:10.1016/j.pneurobio.2013.04.004

    Article  PubMed  CAS  Google Scholar 

  60. Ekstrand MI, Terzioglu M, Galter D, Zhu SW, Hofstetter C, Lindqvist E, Thams S, Bergstrand A et al (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A 104(4):1325–1330. doi:10.1073/pnas.0605208103

  61. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484. doi:10.1126/science.1112125

    Article  CAS  PubMed  Google Scholar 

  62. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R et al (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102(50):17993–17998. doi:10.1073/pnas.0508886102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thompson LV (2006) Oxidative stress, mitochondria and mtDNA-mutator mice. Exp Gerontol 41(12):1220–1222. doi:10.1016/j.exger.2006.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilkinson KD (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11(14):1245–1256

    CAS  PubMed  Google Scholar 

  65. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397. doi:10.1146/annurev.biochem.78.082307.091526

    Article  CAS  PubMed  Google Scholar 

  66. Acharya N, Yoon JH, Gali H, Unk I, Haracska L, Johnson RE, Hurwitz J, Prakash L et al (2008) Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc Natl Acad Sci U S A 105(46):17724–17729. doi:10.1073/pnas.0809844105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zlatanou A, Despras E, Braz-Petta T, Boubakour-Azzouz I, Pouvelle C, Stewart GS, Nakajima S, Yasui A et al (2011) The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells. Mol Cell 43(4):649–662. doi:10.1016/j.molcel.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  68. Lee JG, Baek K, Soetandyo N, Ye Y (2013) Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 4:1568. doi:10.1038/ncomms2532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Watts FZ (2013) Starting and stopping SUMOylation. What regulates the regulator? Chromosoma 122(6):451–463. doi:10.1007/s00412-013-0422-0

    Article  CAS  PubMed  Google Scholar 

  70. Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21(3):349–357. doi:10.1016/j.molcel.2005.12.019

    Article  CAS  PubMed  Google Scholar 

  71. Bossis G, Melchior F (2006) SUMO: regulating the regulator. Cell Div 1:13. doi:10.1186/1747-1028-1-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1):1–12. doi:10.1016/j.molcel.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  73. Gali H, Juhasz S, Morocz M, Hajdu I, Fatyol K, Szukacsov V, Burkovics P, Haracska L (2012) Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res 40(13):6049–6059. doi:10.1093/nar/gks256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190(5):719–729. doi:10.1083/jcb.201005144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840. doi:10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  76. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473. doi:10.1073/pnas.95.11.6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294(5545):1346–1349. doi:10.1126/science.1063522

    Article  CAS  PubMed  Google Scholar 

  78. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298. doi:10.1146/annurev.neuro.26.010302.081142

    Article  CAS  PubMed  Google Scholar 

  79. Zhou W, Freed CR (2004) Tyrosine-to-cysteine modification of human alpha-synuclein enhances protein aggregation and cellular toxicity. J Biol Chem 279(11):10128–10135. doi:10.1074/jbc.M307563200

    Article  CAS  PubMed  Google Scholar 

  80. Uversky VN, Yamin G, Souillac PO, Goers J, Glaser CB, Fink AL (2002) Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 517(1–3):239–244

    Article  CAS  PubMed  Google Scholar 

  81. Hokenson MJ, Uversky VN, Goers J, Yamin G, Munishkina LA, Fink AL (2004) Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Biochem Us 43(15):4621–4633. doi:10.1021/Bi049979h

    Article  CAS  Google Scholar 

  82. Glaser CB, Yamin G, Uversky VN, Fink AL (2005) Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochim Biophys Acta 1703(2):157–169. doi:10.1016/j.bbapap.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  83. Leong SL, Pham CL, Galatis D, Fodero-Tavoletti MT, Perez K, Hill AF, Masters CL, Ali FE et al (2009) Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic Biol Med 46(10):1328–1337. doi:10.1016/j.freeradbiomed.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  84. Leong SL, Cappai R, Barnham KJ, Pham CL (2009) Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res 34(10):1838–1846. doi:10.1007/s11064-009-9986-8

    Article  CAS  PubMed  Google Scholar 

  85. Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282(21):15597–15605. doi:10.1074/jbc.M610893200

    Article  CAS  PubMed  Google Scholar 

  86. Pham CL, Leong SL, Ali FE, Kenche VB, Hill AF, Gras SL, Barnham KJ, Cappai R (2009) Dopamine and the dopamine oxidation product 5,6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of alpha-synuclein in a pH-dependent manner. J Mol Biol 387(3):771–785. doi:10.1016/j.jmb.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  87. Bisaglia M, Tosatto L, Munari F, Tessari I, de Laureto PP, Mammi S, Bubacco L (2010) Dopamine quinones interact with alpha-synuclein to form unstructured adducts. Biochem Biophys Res Commun 394(2):424–428. doi:10.1016/j.bbrc.2010.03.044

    Article  CAS  PubMed  Google Scholar 

  88. Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003) The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37(4):583–595. doi:10.1016/S0896-6273(03)00024-2

    Article  CAS  PubMed  Google Scholar 

  89. Qin Z, Hu D, Han S, Reaney SH, Di Monte DA, Fink AL (2007) Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. J Biol Chem 282(8):5862–5870. doi:10.1074/jbc.M608126200

    Article  CAS  PubMed  Google Scholar 

  90. Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG et al (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283(16):10992–11003. doi:10.1074/jbc.M709634200

    Article  CAS  PubMed  Google Scholar 

  91. Hillmer AS, Putcha P, Levin J, Hogen T, Hyman BT, Kretzschmar H, McLean PJ, Giese A (2010) Converse modulation of toxic alpha-synuclein oligomers in living cells by N′-benzylidene-benzohydrazide derivates and ferric iron. Biochem Biophys Res Commun 391(1):461–466. doi:10.1016/j.bbrc.2009.11.080

    Article  CAS  PubMed  Google Scholar 

  92. Levin J, Hogen T, Hillmer AS, Bader B, Schmidt F, Kamp F, Kretzschmar HA, Botzel K et al (2011) Generation of ferric iron links oxidative stress to alpha-synuclein oligomer formation. J Park Dis 1(2):205–216. doi:10.3233/JPD-2011-11040

    CAS  Google Scholar 

  93. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305

    Article  CAS  PubMed  Google Scholar 

  94. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40(2):427–446

    Article  CAS  PubMed  Google Scholar 

  95. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. doi:10.1146/annurev.biochem.67.1.425

    Article  CAS  PubMed  Google Scholar 

  96. Dantuma NP, Bott LC (2014) The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 7:70. doi:10.3389/fnmol.2014.00070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, Ma Y, Moosmann B et al (2011) Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 6:34. doi:10.1186/1750-1326-6-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA et al (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615–623

    Article  CAS  PubMed  Google Scholar 

  99. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3–4):301–310

    Article  CAS  PubMed  Google Scholar 

  100. Bader N, Grune T (2006) Protein oxidation and proteolysis. Biol Chem 387(10–11):1351–1355. doi:10.1515/BC.2006.169

    CAS  PubMed  Google Scholar 

  101. Wang X, Yen J, Kaiser P, Huang L (2010) Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3(151):ra88. doi:10.1126/scisignal.2001232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Silva GM, Netto LE, Simoes V, Santos LF, Gozzo FC, Demasi MA, Oliveira CL, Bicev RN et al (2012) Redox control of 20S proteasome gating. Antioxid Redox Signal 16(11):1183–1194. doi:10.1089/ars.2011.4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Livnat-Levanon N, Kevei E, Kleifeld O, Krutauz D, Segref A, Rinaldi T, Erpapazoglou Z, Cohen M et al (2014) Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep 7(5):1371–1380. doi:10.1016/j.celrep.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  104. Dragicevic E, Schiemann J, Liss B (2015) Dopamine midbrain neurons in health and Parkinson’s disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels. Neuroscience 284:798–814. doi:10.1016/j.neuroscience.2014.10.037

    Article  CAS  PubMed  Google Scholar 

  105. Quik M, Wonnacott S (2011) alpha6beta2* and alpha4beta2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev 63(4):938–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275(1 Pt 1):C1–C24

    CAS  PubMed  Google Scholar 

  107. Horenstein J, Wagner DA, Czajkowski C, Akabas MH (2001) Protein mobility and GABA-induced conformational changes in GABAA receptor pore-lining M2 segment. Nat Neurosci 4(5):477–485

    CAS  PubMed  Google Scholar 

  108. Campanucci VA, Krishnaswamy A, Cooper E (2008) Mitochondrial reactive oxygen species inactivate neuronal nicotinic acetylcholine receptors and induce long-term depression of fast nicotinic synaptic transmission. J Neurosci 28(7):1733–1744. doi:10.1523/JNEUROSCI.5130-07.2008

    Article  CAS  PubMed  Google Scholar 

  109. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417(6888):523–526. doi:10.1038/417523a

    Article  CAS  PubMed  Google Scholar 

  110. Enkvetchakul D, Nichols CG (2003) Gating mechanism of KATP channels: function fits form. J Gen Physiol 122(5):471–480. doi:10.1085/jgp.200308878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Drain P, Geng X, Li L (2004) Concerted gating mechanism underlying KATP channel inhibition by ATP. Biophys J 86(4):2101–2112. doi:10.1016/S0006-3495(04)74269-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sun HS, Feng ZP (2013) Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacol Sin 34(1):24–32. doi:10.1038/aps.2012.138

    Article  PubMed  CAS  Google Scholar 

  113. Wilson CJ (1993) The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 99:277–297

    Article  CAS  PubMed  Google Scholar 

  114. Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14(10):6084–6093

    CAS  PubMed  Google Scholar 

  115. Avshalumov MV, Patel JC, Rice ME (2008) AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release. J Neurophysiol 100(3):1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Babenko AP, Aguilar-Bryan L, Bryan J (1998) A view of sur/KIR6.X, KATP channels. Annu Rev Physiol 60:667–687. doi:10.1146/annurev.physiol.60.1.667

    Article  CAS  PubMed  Google Scholar 

  117. Miki T, Nagashima K, Seino S (1999) The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. J Mol Endocrinol 22(2):113–123

    Article  CAS  PubMed  Google Scholar 

  118. Seino S, Miki T (2003) Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 81(2):133–176

    Article  CAS  PubMed  Google Scholar 

  119. Avshalumov MV, Chen BT, Marshall SP, Pena DM, Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23(7):2744–2750

    CAS  PubMed  Google Scholar 

  120. Tanner CM (2010) Advances in environmental epidemiology. Mov Disord 25(Suppl 1):S58–S62. doi:10.1002/mds.22721

    Article  PubMed  Google Scholar 

  121. Ryan RE, Ross SA, Drago J, Loiacono RE (2001) Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. Br J Pharmacol 132(8):1650–1656. doi:10.1038/sj.bjp.0703989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Srinivasan R, Henderson BJ, Lester HA, Richards CI (2014) Pharmacological chaperoning of nAChRs: a therapeutic target for Parkinson’s disease. Pharmacol Res 83:20–29. doi:10.1016/j.phrs.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  123. Mazzo F, Pistillo F, Grazioso G, Clementi F, Borgese N, Gotti C, Colombo SF (2013) Nicotine-modulated subunit stoichiometry affects stability and trafficking of alpha3beta4 nicotinic receptor. J Neurosci 33(30):12316–12328. doi:10.1523/JNEUROSCI.2393-13.2013

    Article  CAS  PubMed  Google Scholar 

  124. Krishnaswamy A, Cooper E (2012) Reactive oxygen species inactivate neuronal nicotinic acetylcholine receptors through a highly conserved cysteine near the intracellular mouth of the channel: implications for diseases that involve oxidative stress. J Physiol 590(1):39–47

    Article  CAS  PubMed  Google Scholar 

  125. Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25(6):317–324. doi:10.1016/j.tips.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  126. Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M et al (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23(21):7820–7829

    CAS  PubMed  Google Scholar 

  127. Campanucci V, Krishnaswamy A, Cooper E (2010) Diabetes depresses synaptic transmission in sympathetic ganglia by inactivating nAChRs through a conserved intracellular cysteine residue. Neuron 66(6):827–834. doi:10.1016/j.neuron.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  128. Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, Bupp S, Heintz N et al (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity a6* nicotinic acetylcholine receptors. Neuron 60(1):123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Quik M, Perez XA, Bordia T (2012) Nicotine as a potential neuroprotective agent for Parkinson’s disease. Mov Disord 27(8):947–957. doi:10.1002/Mds.25028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Waak J, Weber SS, Gorner K, Schall C, Ichijo H, Stehle T, Kahle PJ (2009) Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1. J Biol Chem 284(21):14245–14257. doi:10.1074/jbc.M806902200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wilson MA (2011) The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid Redox Signal 15(1):111–122. doi:10.1089/ars.2010.3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shinbo Y, Niki T, Taira T, Ooe H, Takahashi-Niki K, Maita C, Seino C, Iguchi-Ariga SMM et al (2006) Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ 13(1):96–108. doi:10.1038/sj.cdd.4401704

    Article  CAS  PubMed  Google Scholar 

  133. Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SMM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxidative Med Cell Longev. doi:10.1155/2013/683920, Unsp 683920

  134. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160. doi:10.1126/science.1096284

    Article  CAS  PubMed  Google Scholar 

  135. Chien WL, Lee TR, Hung SY, Kang KH, Wu RM, Lee MJ, Fu WM (2013) Increase of oxidative stress by a novel PINK1 mutation, P209A. Free Radic Biol Med 58:160–169. doi:10.1016/j.freeradbiomed.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  136. Chien WL, Lee TR, Hung SY, Kang KH, Lee MJ, Fu WM (2011) Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1. J Neurochem 117(4):643–653. doi:10.1111/j.1471-4159.2011.07229.x

    CAS  PubMed  Google Scholar 

  137. Malagelada C, Jin ZH, Greene LA (2008) RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci 28(53):14363–14371. doi:10.1523/Jneurosci.3928-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Durgadoss L, Nidadavolu P, Valli RK, Saeed U, Mishra M, Seth P, Ravindranath V (2012) Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt. FASEB J 26(4):1473–1483. doi:10.1096/fj.11-194100

    Article  CAS  PubMed  Google Scholar 

  139. Parkinson Study Group QEI, Beal MF, Oakes D, Shoulson I, Henchcliffe C, Galpern WR, Haas R, Juncos JL et al (2014) A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol 71(5):543–552. doi:10.1001/jamaneurol.2014.131

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31571202, 31271136, and 81371398), the Young Talents Cultivation Plan in Beijing Local University (CIT and TCD201504087), the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201210025020 and 7131001), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20140514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yu, S., Zheng, Y. et al. Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson’s Disease. Mol Neurobiol 54, 1404–1418 (2017). https://doi.org/10.1007/s12035-016-9743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9743-3

Keywords

Navigation