Skip to main content
Log in

Starting and stopping SUMOylation

What regulates the regulator?

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A large number of proteins are modified post-translationally by the ubiquitin-like protein (Ubl) SUMO. This process, known as sumoylation, regulates the function, localisation and activity of target proteins as part of normal cellular metabolism, e.g., during development, and through the cell cycle, as well as in response to a range of stresses. In order to be effective, the sumoylation pathway itself must also be regulated. This review describes how the SUMOylation process is regulated. In particular, regulation of the SUMO conjugation and deconjugation machinery at the level of transcription and by post-translational modifications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albor A, El-Hizawi S, Horn EJ, Laederich M, Frosk P, Wrogemann K, Kulesz-Martin M (2006) The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB. J Biol Chem 281:25850–25866

    Article  PubMed  CAS  Google Scholar 

  • Amente S, Lavadera ML, Palo GD, Majello B (2012) SUMO-activating SAE1 transcription is positively regulated by Myc. Am J Cancer Res 2:330–334

    PubMed  CAS  Google Scholar 

  • Azuma Y, Tan SH, Cavenagh MM, Ainsztein AM, Saitoh H, Dasso M (2001) Expression and regulation of the mammalian SUMO-1 E1 enzyme. FASEB J 15:1825–1827

    PubMed  CAS  Google Scholar 

  • Bailey D, O'Hare P (2002) Herpes simplex virus 1 ICP0 co-localizes with a SUMO-specific protease. J Gen Virol 83:2951–2964

    PubMed  CAS  Google Scholar 

  • Bailey D, O'Hare P (2004) Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem 279:692–703

    Article  PubMed  CAS  Google Scholar 

  • Bawa-Khalfe T, Cheng J, Lin SH, Ittmann MM, Yeh ET (2010) SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms. J Biol Chem 285:25859–25866

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Barysch SV, Karaca S, Dittner C, Hsiao HH, Diaz MB, Herzig S, Urlaub H, Melchior F (2013) Detecting endogenous SUMO targets in mammalian cells and tissues. Nat Struct Mol Biol 20:525–531

    Article  PubMed  CAS  Google Scholar 

  • Bettermann K, Benesch M, Weis S, Haybaeck J (2012) SUMOylation in carcinogenesis. Cancer Lett 316:113–125

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH, Cepko CL (2004) Genomic analysis of mouse retinal development. PLoS Biology 2:E247

    Article  PubMed  CAS  Google Scholar 

  • Boggio R, Colombo R, Hay RT, Draetta GF, Chiocca S (2004) A mechanism for inhibiting the SUMO pathway. Molecular cell 16:549–561

    Article  PubMed  CAS  Google Scholar 

  • Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357

    Article  PubMed  CAS  Google Scholar 

  • Bruderer R, Tatham MH, Plechanovova A, Matic I, Garg AK, Hay RT (2011) Purification and identification of endogenous polySUMO conjugates. EMBO Rep 12:142–148

    Article  PubMed  CAS  Google Scholar 

  • Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131:309–323

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Dioum EM, Hogg RT, Gerard RD, Garcia JA (2011a) Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J Biol Chem 286:13869–13878

    Article  PubMed  CAS  Google Scholar 

  • Chen SF, Gong C, Luo M, Yao HR, Zeng YJ, Su FX (2011b) Ubc9 expression predicts chemoresistance in breast cancer. Chin J Cancer 30:638–644

    Article  PubMed  CAS  Google Scholar 

  • Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006a) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20:2067–2081

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Bawa T, Lee P, Gong L, Yeh ET (2006b) Role of desumoylation in the development of prostate cancer. Neoplasia 8:667–676

    Article  PubMed  CAS  Google Scholar 

  • Chiocca S (2007) Viral control of the SUMO pathway: Gaml, a model system. Biochem Soc Trans 35:1419–1421

    Article  PubMed  CAS  Google Scholar 

  • Chow KH, Elgort S, Dasso M, Ullman KS (2012) Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2. Nucleus 3:349–358

    Article  PubMed  Google Scholar 

  • Comerford KM, Leonard MO, Karhausen J, Carey R, Colgan SP, Taylor CT (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 100:986–991

    Article  PubMed  CAS  Google Scholar 

  • Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N (2007) A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene 26:6665–6676

    Article  PubMed  CAS  Google Scholar 

  • Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    Article  PubMed  CAS  Google Scholar 

  • Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG (2007) Sumoylation dynamics during keratinocyte differentiation. Journal of cell science 120:125–136

    Article  PubMed  CAS  Google Scholar 

  • Dohmen RJ, Stappen R, McGrath JP, Forrova H, Kolarov J, Goffeau A, Varshavsky A (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270:18099–18109

    Article  PubMed  CAS  Google Scholar 

  • Donaghue C, Bates H, Cotterill S (2001) Identification and characterisation of the Drosophila homologue of the yeast Uba2 gene. Biochim Biophys Acta 1518:210–214

    Article  PubMed  CAS  Google Scholar 

  • Driscoll JJ, Pelluru D, Lefkimmiatis K, Fulciniti M, Prabhala RH, Greipp PR, Barlogie B, Tai YT, Anderson KC, Shaughnessy JD Jr, Annunziata CM, Munshi NC (2010) The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood 115:2827–2834

    Article  PubMed  CAS  Google Scholar 

  • Elmore ZC, Donaher M, Matson BC, Murphy H, Westerbeck JW, Kerscher O (2011) Sumo-dependent substrate targeting of the SUMO protease Ulp1. BMC Biol 9:74

    Article  PubMed  CAS  Google Scholar 

  • Erker Y, Neyret-Kahn H, Seeler JS, Dejean A, Atfi A, Levy L (2013) Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 33:2163–2177

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  PubMed  CAS  Google Scholar 

  • Flick K, Kaiser P (2009) Proteomic revelation: SUMO changes partners when the heat is on. Sci Signal 2

  • Goeres J, Chan PK, Mukhopadhyay D, Zhang H, Raught B, Matunis MJ (2011) The SUMO-specific isopeptidase SENP2 associates dynamically with nuclear pore complexes through interactions with karyopherins and the Nup107-160 nucleoporin subcomplex. Molecular Biology of the Cell 22:4868–4882

    Article  PubMed  CAS  Google Scholar 

  • Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24

    Article  PubMed  CAS  Google Scholar 

  • Golebiowski F, Szulc A, Sakowicz M, Szutowicz A, Pawelczyk T (2003) Expression level of Ubc9 protein in rat tissues. Acta Biochim Pol 50:1065–1073

    PubMed  CAS  Google Scholar 

  • Gong L, Millas S, Maul GG, Yeh ET (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275:3355–3359

    Article  PubMed  CAS  Google Scholar 

  • Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110

    Article  PubMed  CAS  Google Scholar 

  • Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  PubMed  CAS  Google Scholar 

  • Heaton PR, Deyrieux AF, Bian XL, Wilson VG (2011) HPV E6 proteins target Ubc9, the SUMO conjugating enzyme. Virus Res 158:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 13:755–766

    Article  PubMed  CAS  Google Scholar 

  • Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A 103:45–50

    Article  PubMed  CAS  Google Scholar 

  • Ho CW, Chen HT, Hwang J (2011) UBC9 autosumoylation negatively regulates sumoylation of septins in Saccharomyces cerevisiae. J Biol Chem 286:21826–21834

    Article  PubMed  CAS  Google Scholar 

  • Hoefer J, Schafer G, Klocker H, Erb HH, Mills IG, Hengst L, Puhr M, Culig Z (2012) PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. Am J Pathol 180:2097–2107

    Article  PubMed  CAS  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  PubMed  CAS  Google Scholar 

  • Hsieh YL, Kuo HY, Chang CC, Naik MT, Liao PH, Ho CC, Huang TC, Jeng JC, Hsu PH, Tsai MD, Huang TH, Shih HM (2013) Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response. EMBO J 32:791–804

    Article  PubMed  CAS  Google Scholar 

  • Itahana Y, Yeh ET, Zhang Y (2006) Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 26:4675–4689

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Molecular cell 49:795–807

    Article  PubMed  CAS  Google Scholar 

  • Jacques C, Baris O, Prunier-Mirebeau D, Savagner F, Rodien P, Rohmer V, Franc B, Guyetant S, Malthiery Y, Reynier P (2005) Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J Clin Endocrinol Metab 90:2314–2320

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744

    Article  PubMed  CAS  Google Scholar 

  • Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, Rao M, Yu P, Dominguez-Vidana R, Liang AC, Solimini NL, Bernardi RJ, Yu B, Hsu T, Golding I, Luo J, Osborne CK, Creighton CJ, Hilsenbeck SG, Schiff R, Shaw CA, Elledge SJ, Westbrook TF (2012) A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335:348–353

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Sung KS, Lee SJ, Kim YO, Choi CY, Kim Y (2005) Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1. FEBS Lett 579:6272–6278

    Article  PubMed  CAS  Google Scholar 

  • Klug H, Xaver M, Chaugule VK, Koidl S, Mittler G, Klein F, Pichler A (2013) Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae. Molecular Cell

  • Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31:371–382

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC, Radding CM, Golub EI (1996) Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci U S A 93:2958–2963

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and −2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  PubMed  CAS  Google Scholar 

  • Ledl A, Schmidt D, Muller S (2005) Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene 24:3810–3818

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Thorgeirsson SS (2004) Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 127:S51–S55

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Mabb AM, Gill GB, Yeh ET, Miyamoto S (2011) NF-kappaB induction of the SUMO protease SENP2: a negative feedback loop to attenuate cell survival response to genotoxic stress. Molecular cell 43:180–191

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160:1069–1081

    Article  PubMed  CAS  Google Scholar 

  • Li X, Luo Y, Yu L, Lin Y, Luo D, Zhang H, He Y, Kim YO, Kim Y, Tang S, Min W (2008) SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis. Cell Death Differ 15:739–750

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129:903–914

    Article  PubMed  CAS  Google Scholar 

  • Lois LM, Lima CD (2005) Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J 24:439–451

    Article  PubMed  CAS  Google Scholar 

  • Makhnevych T, Ptak C, Lusk CP, Aitchison JD, Wozniak RW (2007) The role of karyopherins in the regulated sumoylation of septins. The Journal of Cell Biology 177:39–49

    Article  PubMed  CAS  Google Scholar 

  • Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, Roberts RL, Liebler DC (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem Res Toxicol 17:1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Matic I, Macek B, Hilger M, Walther TC, Mann M (2008) Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res 7:4050–4057

    Article  PubMed  CAS  Google Scholar 

  • Matic I, Schimmel J, Hendriks IA, van Santen MA, van de Rijke F, van Dam H, Gnad F, Mann M, Vertegaal AC (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol Cell 39:641–652

    Article  PubMed  CAS  Google Scholar 

  • McDoniels-Silvers AL, Nimri CF, Stoner GD, Lubet RA, You M (2002) Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res 8:1127–1138

    PubMed  CAS  Google Scholar 

  • Mo YY, Moschos SJ (2005) Targeting Ubc9 for cancer therapy. Expert Opin Ther Targets 9:1203–1216

    Article  PubMed  CAS  Google Scholar 

  • Mo YY, Yu Y, Theodosiou E, Ee PL, Beck WT (2005) A role for Ubc9 in tumorigenesis. Oncogene 24:2677–2683

    Article  PubMed  CAS  Google Scholar 

  • Moschos SJ, Jukic DM, Athanassiou C, Bhargava R, Dacic S, Wang X, Kuan SF, Fayewicz SL, Galambos C, Acquafondata M, Dhir R, Becker D (2010) Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Hum Pathol 41:1286–1298

    Article  PubMed  CAS  Google Scholar 

  • Moutty MC, Sakin V, Melchior F (2011) Importin alpha/beta mediates nuclear import of individual SUMO E1 subunits and of the holo-enzyme. Molecular Biology of the Cell 22:652–660

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32:286–295

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Dejean A (1999) Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73:5137–5143

    PubMed  CAS  Google Scholar 

  • Nigam N, Singh A, Sahi C, Chandramouli A, Grover A (2008) SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics 279:371–383

    Article  PubMed  CAS  Google Scholar 

  • Panse VG, Kuster B, Gerstberger T, Hurt E (2003) Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol 5:21–27

    Article  PubMed  CAS  Google Scholar 

  • Parkinson J, Everett RD (2000) Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74:10006–10017

    Article  PubMed  CAS  Google Scholar 

  • Pinto MP, Carvalho AF, Grou CP, Rodriguez-Borges JE, Sa-Miranda C, Azevedo JE (2012) Heat shock induces a massive but differential inactivation of SUMO-specific proteases. Biochim Biophys Acta 1823:1958–1966

    Article  PubMed  CAS  Google Scholar 

  • Roscic A, Moller A, Calzado MA, Renner F, Wimmer VC, Gresko E, Ludi KS, Schmitz ML (2006) Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Molecular cell 24:77–89

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T, Mohun TJ, Dasso M (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8:121–124

    Article  PubMed  CAS  Google Scholar 

  • Sang J, Yang K, Sun Y, Han Y, Cang H, Chen Y, Shi G, Wang K, Zhou J, Wang X, Yi J (2011) SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner. Biochem J 435:489–498

    Article  PubMed  CAS  Google Scholar 

  • Schwienhorst I, Johnson ES, Dohmen RJ (2000) SUMO conjugation and deconjugation. Mol Gen Genet 263:771–786

    Article  PubMed  CAS  Google Scholar 

  • Shao R, Zhang FP, Tian F, Anders Friberg P, Wang X, Sjoland H, Billig H (2004) Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett 569:293–300

    Article  PubMed  CAS  Google Scholar 

  • Skilton A, Ho JC, Mercer B, Outwin E, Watts FZ (2009) SUMO chain formation is required for response to replication arrest in S. pombe. PLoS One 4:e6750

    Article  PubMed  CAS  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101:14373–14378

    Article  PubMed  CAS  Google Scholar 

  • Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280:40122–40129

    Article  PubMed  CAS  Google Scholar 

  • Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    Article  PubMed  CAS  Google Scholar 

  • Su YF, Yang T, Huang H, Liu LF, Hwang J (2012) Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity. PLoS One 7:e34250

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Mealer RG, Sixt KM, Barrow RK, Usiello A, Snyder SH (2010) Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9. J Biol Chem 285:20428–20432

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Hunter T (2012) Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J Biol Chem 287:42071–42083

    Article  PubMed  CAS  Google Scholar 

  • Sydorskyy Y, Srikumar T, Jeram SM, Wheaton S, Vizeacoumar FJ, Makhnevych T, Chong YT, Gingras AC, Raught B (2010) A novel mechanism for SUMO system control: regulated Ulp1 nucleolar sequestration. Mol Cell Biol 30:4452–4462

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Kahyo T, Toh EA, Yasuda H, Kikuchi Y (2001) Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem 276:48973–48977

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Toh EA, Kikuchi Y (2003) Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. J Biochem (Tokyo) 133:415–422

    Article  CAS  Google Scholar 

  • Talamillo A, Sanchez J, Barrio R (2008) Functional analysis of the SUMOylation pathway in Drosophila. Biochem Soc Trans 36:868–873

    Article  PubMed  CAS  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546

    Article  PubMed  CAS  Google Scholar 

  • Tatham MH, Matic I, Mann M, Hay RT (2011) Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci Signal 4:rs4

    Article  PubMed  CAS  Google Scholar 

  • Tatham MH, Plechanovova A, Jaffray EG, Salmen H, Hay RT (2013) Ube2W conjugates ubiquitin to alpha-amino groups of protein N-termini. The Biochemical journal

  • Taylor DL, Ho JC, Oliver A, Watts FZ (2002) Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J Cell Sci 115:1113–1122

    PubMed  CAS  Google Scholar 

  • Truong K, Lee TD, Chen Y (2012a) Small ubiquitin-like modifier (SUMO) modification of E1 Cys domain inhibits E1 Cys domain enzymatic activity. J Biol Chem 287:15154–15163

    Article  PubMed  CAS  Google Scholar 

  • Truong K, Lee TD, Li B, Chen Y (2012b) Sumoylation of SAE2 C-terminus regulates SAE nuclear localization. J Biol Chem 287:42611–42619

    Article  PubMed  CAS  Google Scholar 

  • Ullmann R, Chien CD, Avantaggiati ML, Muller S (2012) An acetylation switch regulates SUMO-dependent protein interaction networks. Molecular cell 46:759–770

    Article  PubMed  CAS  Google Scholar 

  • Um JW, Chung KC (2006) Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res 84:1543–1554

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Banerjee S (2004) Differential PIAS3 expression in human malignancy. Oncol Rep 11:1319–1324

    PubMed  CAS  Google Scholar 

  • Wang Y, Mukhopadhyay D, Mathew S, Hasebe T, Heimeier RA, Azuma Y, Kolli N, Shi YB, Wilkinson KD, Dasso M (2009) Identification and developmental expression of Xenopus laevis SUMO proteases. PLoS One 4:e8462

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Prelich G (2009) Quality control of a transcriptional regulator by SUMO-targeted degradation. Mol Cell Biol 29:1694–1706

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Qiu QQ, Seufert W, Taguchi T, Testa JR, Whitmore SA, Callen DF, Welsh D, Shenk T, Deuel TF (1996) Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9. J Biol Chem 271:24811–24816

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlegel JA, Johnson ES, Reed SI, Yates JR 3rd (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Lam LS, Lam LH, Chau SF, Ng TB, Au SW (2008) Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB J 22:127–137

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Sun X, Xiang B, Cang H, Kang X, Chen Y, Li H, Shi G, Yeh ET, Wang B, Wang X, Yi J (2010) Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90. EMBO J 29:3773–3786

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Santti H, Janne OA, Palvimo JJ, Toppari J (2003) Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat. Gene Expr Patterns 3:301–308

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Galanis A, Witty J, Sharrocks AD (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J 25:5083–5093

    Article  PubMed  CAS  Google Scholar 

  • Yeh ET (2009) SUMOylation and De-SUMOylation: wrestling with life's processes. J Biol Chem 284:8223–8227

    Article  PubMed  CAS  Google Scholar 

  • Yun C, Wang Y, Mukhopadhyay D, Backlund P, Kolli N, Yergey A, Wilkinson KD, Dasso M (2008) Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol 183:589–595

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Kwon SW, Anselmo A, Kaur K, White MA (2004) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J Biol Chem 279:20999–21002

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279:32262–32268

    Article  PubMed  CAS  Google Scholar 

  • Zunino R, Braschi E, Xu L, McBride HM (2009) Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem 284:17783–17795

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Alan Lehmann, Keith Caldecott and Simon Morley for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicity Z. Watts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, F.Z. Starting and stopping SUMOylation. Chromosoma 122, 451–463 (2013). https://doi.org/10.1007/s00412-013-0422-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0422-0

Keywords

Navigation