Skip to main content

Advertisement

Log in

Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) are important for the maintenance of brain homeostasis. During sepsis, peripheral production of proinflammatory cytokines and reactive oxygen species are responsible for structural alterations in those brain barriers. Thus, an increasing permeability of these barriers can lead to the activation of glial cells such as microglia and the production of cytotoxic mediators which in turn act on the brain barriers, damaging them further. Thereby, in this review, we try to highlight how the brain barrier’s permeability is not only a cause but a consequence of brain injury in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hotchkiss RKI (2003) The pathophysiology and treatment of sepsis. N Eng J Med:1–19

  2. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med 35:1244–1250. doi:10.1097/01.CCM.0000261890.41311.E9

    Article  PubMed  Google Scholar 

  3. Ely EW (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA J Am Med Assoc 291:1753–1762. doi:10.1001/jama.291.14.1753

    Article  CAS  Google Scholar 

  4. Dal-Pizzol F, Ritter C, Cassol-Jr OJ et al (2010) Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res 35:1–12. doi:10.1007/s11064-009-0043-4

    Article  CAS  PubMed  Google Scholar 

  5. Petronilho F, Périco SR, Vuolo F et al (2012) Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 26:904–910. doi:10.1016/j.bbi.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  6. Biff D, Petronilho F, Constantino L et al (2013) Correlation of acute phase inflammatory and oxidative markers with long-term cognitive impairment in sepsis survivors rats. Shock 40:45–48. doi:10.1097/SHK.0b013e3182959cfa

    Article  CAS  PubMed  Google Scholar 

  7. Sankowski R, Mader S, ValdÃs-Ferrer SI (2015) Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci 9:1–20. doi:10.3389/fncel.2015.00028

    Article  Google Scholar 

  8. Da Fonseca AC, Matias D, Garcia C et al (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362. doi:10.3389/fncel.2014.00362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sonneville R, Verdonk F, Rauturier C et al (2013) Understanding brain dysfunction in sepsis. Ann Intensive Care 3:15. doi:10.1186/2110-5820-3-15

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lamar CD, Hurley RA, Hayman LA, Taber KH (2011) Sepsis-associated encephalopathy: review of the neuropsychiatric manifestations and cognitive outcome. J Neuropsychiatry Clin Neurosci:3–23

  11. Zhang L, Wang X, Ai Y et al (2012) Epidemiological features and risk factors of sepsis-associated encephalopathy in intensive care unit patients: 2008–2011. Chin Med J 125:2008–2011. doi:10.3760/cma.j.issn.0366-6999.2012.05.018

    Google Scholar 

  12. Van Eersel J, Ke YD, Liu X et al (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci U S A 107:13888–13893. doi:10.1073/pnas.1009038107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwashyna TJ, Ely W, Dylan M, Smith D (2010) Long-term cognitive impairment and functional disability among survivors of severe. Sepsis 304:1787–1794. doi:10.1001/jama.2010.1553

    CAS  Google Scholar 

  14. Kaur J, Singhi P, Singhi S et al (2015) Neurodevelopmental and behavioral outcomes in children with sepsis-associated encephalopathy admitted to pediatric intensive care. A Prospective Case Control Study. J Child Neurol, Unit. doi:10.1177/0883073815610431

    Google Scholar 

  15. Davydow DS, Hough CL, Langa KM, Iwashyna TJ (2012) Pre-sepsis depressive symptoms are associated with incident cognitive impairment in survivors of severe sepsis: a prospective cohort study of older Americans. J Am Geriatr Soc 60:2290–2296. doi:10.1111/jgs.12001.Pre-Sepsis

    Article  PubMed  PubMed Central  Google Scholar 

  16. Girard TD, Jackson JC, Pratik P, Pandharipande PP et al (2010) Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 38:1513–1520. doi:10.1097/CCM.0b013e3181e47be1.Delirium

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barichello T, Martins MR, Reinke A et al (2005) Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med 33:221–223. doi:10.1097/01.CCM.0000150741.12906.BD

    Article  PubMed  Google Scholar 

  18. Barichello T (2007) Behavioral deficits in sepsis-surviving rats induced by cecal ligation and perforation. 40:831–837.

  19. Tuon L, Comim C, Petronilho F, et al. (2008) Time-dependent behavioral recovery after sepsis in rats 28:368–370. doi: 10.1007/s00134

  20. Comim C, Constantino L, Petronilho F, et al. (2012) Aversive memory in sepsis survivor rats. 32:10749. doi: 10.1007/s00702

  21. Baracchi F, Ingiosi AM, Raymond RM, Opp MR (2011) Sepsis-induced alterations in sleep of rats. Am J Physiol Regul Integr Comp Physiol 301:R1467–R1478. doi:10.1152/ajpregu.00354.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Comim CM, Cassol-Jr OJ, Constantino LC et al (2010) Depressive-like parameters in sepsis survivor rats. Neurotox Res 17:279–286. doi:10.1007/s12640-009-9101-6

    Article  CAS  PubMed  Google Scholar 

  23. Semmler A, Frisch C, Debeir T et al (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204:733–740. doi:10.1016/j.expneurol.2007.01.003

    Article  PubMed  Google Scholar 

  24. Erbaş O, Taşkiran D (2014) Sepsis-induced changes in behavioral stereotypy in rats; involvement of tumor necrosis factor-alpha, oxidative stress, and dopamine turnover. J Surg Res 186:262–268. doi:10.1016/j.jss.2013.08.001

    Article  PubMed  CAS  Google Scholar 

  25. Granger JI, Ratti P-L, Datta SC et al (2013) Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain. Psychoneuroendocrinology 38:1047–1057. doi:10.1016/j.psyneuen.2012.10.010.Sepsis-induced

    Article  CAS  PubMed  Google Scholar 

  26. Chavan SS, Huerta PT, Robbiati S et al (2012) HMGB1 mediates cognitive impairment in sepsis survivors. Mol Med 18:930–937. doi:10.2119/molmed.2012.00195

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Comim CM, Cassol-Jr OJ, Constantino LS et al (2011) Alterations in inflammatory mediators, oxidative stress parameters and energetic metabolism in the brain of sepsis survivor rats. Neurochem Res 36:304–311. doi:10.1007/s11064-010-0320-2

    Article  CAS  PubMed  Google Scholar 

  28. Comim CM, Vilela MC, Constantino LS et al (2011) Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intensive Care Med 37:711–718. doi:10.1007/s00134-011-2151-2

    Article  CAS  PubMed  Google Scholar 

  29. Mina F, Comim CM, Dominguini D et al (2014) Il1-β involvement in cognitive impairment after sepsis. Mol Neurobiol 49:1069–1076. doi:10.1007/s12035-013-8581-9

    Article  CAS  PubMed  Google Scholar 

  30. Schwalm MT, Pasquali M, Miguel SP et al (2014) Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Mol Neurobiol 49:380–385. doi:10.1007/s12035-013-8526-3

    Article  CAS  PubMed  Google Scholar 

  31. Keaney J, Campbell M (2015) The dynamic blood-brain barrier. FEBS J 282:4067–4079. doi:10.1111/febs.13412

    Article  CAS  PubMed  Google Scholar 

  32. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511. doi:10.1007/s00281-009-0177-0

    Article  PubMed  Google Scholar 

  33. Coisne C, Engelhardt B (2011) Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal 15:1285–1303. doi:10.1089/ars.2011.3929

    Article  CAS  PubMed  Google Scholar 

  34. Chow BW, Gu C (2015) The molecular constituents of the blood-brain barrier. Trends Neurosci 38:598–608. doi:10.1016/j.tins.2015.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Banks WA (2015) Brain, behavior, and immunity the blood-brain barrier in neuroimmunology : Tales of separation and assimilation. Brain Behav Immun 44:1–8. doi:10.1016/j.bbi.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  36. Morgan L, Shah B, Rivers LE et al (2007) Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience 147:664–673. doi:10.1016/j.neuroscience.2007.04.051

    Article  CAS  PubMed  Google Scholar 

  37. Plateel M, Dehouck MP, Torpier G et al (1995) Hypoxia increases the susceptibility to oxidant stress and the permeability of the blood-brain barrier endothelial cell monolayer. J Neurochem 65:2138–2145

    Article  CAS  PubMed  Google Scholar 

  38. Liddelow SA (2015) Development of the choroid plexus and blood-CSF barrier. Front Neurosci 9:1–13. doi:10.3389/fnins.2015.00032

    Article  Google Scholar 

  39. Marques F, Sousa JC (2015) The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. Front Cell Neurosci 9:1–6. doi:10.3389/fncel.2015.00136

    Article  Google Scholar 

  40. Nardacci R, Falciatori I, Moreno S, Stefanini S (2004) Immunohistochemical localization of peroxisomal enzymes during rat embryonic development. J Histochem Cytochem 52:423–436

    Article  CAS  PubMed  Google Scholar 

  41. Ghersi-Egea J-F, Strazielle N, Murat A et al (2006) Brain protection at the blood-cerebrospinal fluid interface involves a glutathione-dependent metabolic barrier mechanism. J Cereb Blood Flow Metab 26:1165–1175. doi:10.1038/sj.jcbfm.9600267

    Article  CAS  PubMed  Google Scholar 

  42. Spector R, Robert Snodgrass S, Johanson CE (2015) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68. doi:10.1016/j.expneurol.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  43. Huet O, Dupic L, Harrois A, Duranteau J (2011) Oxidative stress and endothelial dysfunction during sepsis. Front Biosci 16:1986–1995

    Article  CAS  Google Scholar 

  44. Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304. doi:10.1016/S1471-4906(02)02233-0

    Article  CAS  PubMed  Google Scholar 

  45. Liaunardy-Jopeace A, Gay NJ (2014) Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol 5:473. doi:10.3389/fimmu.2014.00473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Weighardt H (2008) Holzmann B. Role of Toll-like receptor responses for sepsis pathogenesis 212:715–722. doi:10.1016/j.imbio.2007.09.010

    Google Scholar 

  47. Janeway CA (2001) How the immune system protects the host from infection. Microbes Infect 3:1167–1171. doi:10.1016/S1286-4579(01)01477-0

    Article  CAS  PubMed  Google Scholar 

  48. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. doi:10.1146/annurev.immunol.20.083001.084359

    Article  CAS  PubMed  Google Scholar 

  49. Russell J A (2006) Management of sepsis. October 1699–1713. doi: 10.1056/NEJMra043632

  50. Aird W (2003) Review article the role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101:3765–3777. doi:10.1182/blood-2002-06-1887.Supported

    Article  CAS  PubMed  Google Scholar 

  51. Akrout N, Sharshar T, Annane D (2009) Mechanisms of brain signaling during sepsis. Curr Neuropharmacol 7:296–301. doi:10.2174/157015909790031175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaudhry N, Duggal AK (2014) Sepsis associated encephalopathy. doi: 10.1155/2014/762320

  53. Thibeault I, Laflamme N, Rivest S (2001) Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 434:461–477

    Article  CAS  PubMed  Google Scholar 

  54. Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1 ␤ in mediating NF- B activity and COX-2 transcription in cells of the blood – brain barrier in response to a systemic and localized inflammation but not during. Endotoxemia 19:10923–10930

    CAS  Google Scholar 

  55. Strazielle N (2013) Physiology of blood−brain interfaces in relation to brain disposition of small compounds and macromolecules.

  56. Tsao N, Hsu HP, Wu CM et al (2001) Tumour necrosis factor-alpha causes an increase in blood-brain barrier permeability during sepsis. J Med Microbiol 50:812–821

    Article  CAS  PubMed  Google Scholar 

  57. Iacobone E, Bailly-Salin J, Polito A et al (2009) Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med 37:S331–S336. doi:10.1097/CCM.0b013e3181b6ed58

    Article  PubMed  Google Scholar 

  58. Hofer S, Bopp C, Hoerner C et al (2008) Injury of the blood brain barrier and up-regulation of ICAM-1 in. Polymicrobial Sepsis 1 281:276–281. doi:10.1016/j.jss.2007.07.021

    Google Scholar 

  59. Bohatschek M, Werner A, Raivich G (2001) Systemic LPS injection leads to granulocyte influx into normal and injured brain: effects of ICAM-1 deficiency. Exp Neurol 172:137–152. doi:10.1006/exnr.2001.7764

    Article  CAS  PubMed  Google Scholar 

  60. Yokoo H, Chiba S, Tomita K et al (2012) Neurodegenerative evidence in mice brains with cecal ligation and puncture-induced sepsis: preventive effect of the free radical scavenger edaravone. PLoS One 7:e51539. doi:10.1371/journal.pone.0051539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Comim CM, Rezin GT, Scaini G et al (2008) Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion 8:313–318. doi:10.1016/j.mito.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  62. Bayir H, Kagan VE (2008) Bench-to-bedside review: mitochondrial injury, oxidative stress and apoptosis—there is nothing more practical than a good theory. Crit Care 12:206. doi:10.1186/cc6779

    Article  PubMed  PubMed Central  Google Scholar 

  63. Barichello T, Fortunato JJ, Vitali AM et al (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34:886–889. doi:10.1097/01.CCM.0000201880.50116.12

    Article  PubMed  Google Scholar 

  64. Steckert AV, de Castro AA, Quevedo J, Dal-Pizzol F (2014) Sepsis in the central nervous system and antioxidant strategies with N-acetylcysteine, vitamins and statins. Curr Neurovasc Res 11:83–90

    Article  CAS  PubMed  Google Scholar 

  65. Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 72:181–204. doi:10.1038/nature13314.A

    Google Scholar 

  66. Woo MS, Park JS, Choi IY et al (2008) Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 106:770–780. doi:10.1111/j.1471-4159.2008.05430.x

    Article  CAS  PubMed  Google Scholar 

  67. Dal-Pizzol F, Rojas HA, Dos Santos EM et al (2013) Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol:1–18. doi:10.1007/s12035-013-8433-7

  68. Tsuge M, Yasui K, Ichiyawa T et al (2010) Increase of tumor necrosis factor-?? In the blood induces early activation of matrix metalloproteinase-9 in the brain. Microbiol Immunol 54:417–424. doi:10.1111/j.1348-0421.2010.00226.x

    CAS  PubMed  Google Scholar 

  69. Endo H, Sasaki K, Tonosaki A, Kayama T (1998) Three-dimensional and ultrastructural ICAM-1 distribution in the choroid plexus, arachnoid membrane and dural sinus of inflammatory rats induced by LPS injection in the lateral ventricles. Brain Res 793:297–301. doi:10.1016/S0006-8993(98)00042-0

    Article  CAS  PubMed  Google Scholar 

  70. Marques F, Sousa JC, Correia-Neves M et al (2007) The choroid plexus response to peripheral inflammatory stimulus. Neuroscience 144:424–430. doi:10.1016/j.neuroscience.2006.09.029

    Article  CAS  PubMed  Google Scholar 

  71. Meeker RB, Williams K, Killebrew DA, Hudson LC (2012) Cell trafficking through the choroid plexus. Cell Adhes Migr 6:390–396. doi:10.4161/cam.21054

    Article  Google Scholar 

  72. Mitchell K, Yang H, Berk J et al (2009) Monocyte chemoattractant protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation. Neuroscience 158:885–895. doi:10.1016/j.biotechadv.2011.08.021.Secreted

    Article  CAS  PubMed  Google Scholar 

  73. Steffan AM, Lafon ME, Gendrault JL et al (1994) Feline immunodeficiency virus can productively infect cultured endothelial cells from cat brain microvessels. J Gen Virol 75(Pt 12):3647–3653

    Article  CAS  PubMed  Google Scholar 

  74. Stridh L, Ek CJ, Wang X et al (2013) Regulation of toll-like receptors in the choroid plexus in the immature brain after systemic inflammatory stimuli. Transl Stroke Res 4:220–227. doi:10.1007/s12975-012-0248-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mesquita SD, Ferreira AC, Sousa JC et al (2012) Modulation of iron metabolism in aging and in Alzheimer’s disease: relevance of the choroid plexus. Front Cell Neurosci 6:1–10. doi:10.3389/fncel.2012.00025

    Article  CAS  Google Scholar 

  76. Takano M, Ohkusa M, Otani M et al (2015) Lipid A-activated inducible nitric oxide synthase expression via nuclear factor-kappaB in mouse choroid plexus cells. Immunol Lett 167:57–62. doi:10.1016/j.imlet.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  77. Hamed SA, Hamed EA, Abdella MM (2009) Septic encephalopathy: relationship to serum and cerebrospinal fluid levels of adhesion molecules, lipid peroxides and S-100B protein. Neuropediatrics 40:66–72. doi:10.1055/s-0029-1231054

    Article  CAS  PubMed  Google Scholar 

  78. Mégarbane B, Marchal P, Marfaing-Koka A et al (2004) Increased diffusion of soluble adhesion molecules in meningitis, severe sepsis and systemic inflammatory response without neurological infection is associated with intrathecal shedding in cases of meningitis. Intensive Care Med 30:867–874. doi:10.1007/s00134-004-2253-1

    Article  PubMed  Google Scholar 

  79. Pagenstecher A, Stalder AK, Kincaid CL et al (2000) Regulation of matrix metalloproteinases and their inhibitor genes in lipopolysaccharide-induced endotoxemia in mice. Am J Pathol 157:197–210. doi:10.1016/S0002-9440(10)64531-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shyu L-Y, Hu M-E, Chou C-H et al (2015) Fibronectin changes in eosinophilic meningitis with blood–CSF barrier disruption. Exp Parasitol 151-152:73–79. doi:10.1016/j.exppara.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  81. Vandenbroucke RE, Dejonckheere E, Van Lint P et al (2012) Matrix metalloprotease 8-dependent extracellular matrix cleavage at the blood-CSF barrier contributes to lethality during systemic inflammatory diseases. J Neurosci 32:9805–9816. doi:10.1523/JNEUROSCI.0967-12.2012

    Article  CAS  PubMed  Google Scholar 

  82. Hästbacka J, Linko R, Tervahartiala T et al (2014) Serum MMP-8 and TIMP-1 in critically ill patients with acute respiratory failure: TIMP-1 is associated with increased 90-day mortality. Anesth Analg 118:790–798. doi:10.1213/ANE.0000000000000120

    Article  PubMed  CAS  Google Scholar 

  83. Solan PD, Dunsmore KE, Denenberg AG et al (2012) A novel role for matrix metalloproteinase-8 in sepsis. Crit Care Med 40:379–387. doi:10.1097/CCM.0b013e318232e404.A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zeni P, Doepker E, Schulze-Topphoff U et al (2007) MMPs contribute to TNF-alpha-induced alteration of the blood-cerebrospinal fluid barrier in vitro. Am J Physiol Cell Physiol 293:C855–C864. doi:10.1152/ajpcell.00470.2006

    Article  CAS  PubMed  Google Scholar 

  85. Bouchard C, PAGE J, BEDARD A et al (2007) G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia 55:790–800. doi:10.1002/glia

    Article  PubMed  Google Scholar 

  86. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. doi:10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stankovic ND, Teodorczyk M, Ploen R et al (2015) Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol:1–17. doi:10.1007/s00401-015-1524-y

  88. Town T, Nikolic V, Tan J (2005) The microglial “activation” continuum: from innate to adaptive responses. J Neuroinflammation 2:24. doi:10.1186/1742-2094-2-24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Melief J, Koning N, Schuurman KG et al (2012) Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia 60:1506–1517. doi:10.1002/glia.22370

    Article  PubMed  Google Scholar 

  90. Semmler A, Okulla T, Sastre M et al (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30:144–157. doi:10.1016/j.jchemneu.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  91. Cunningham C, Maclullich AMJ (2013) At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behaviour response. Brain Behav Immun 28:1–13. doi:10.1016/j.bbi.2012.07.012

    Article  PubMed  Google Scholar 

  92. Hoogland ICM, Houbolt C, van Westerloo DJ et al (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114. doi:10.1186/s12974-015-0332-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Terrando N, Rei Fidalgo A, Vizcaychipi M et al (2010) The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care 14:R88. doi:10.1186/cc9019

    Article  PubMed  PubMed Central  Google Scholar 

  94. Moraes CA, Santos G, De Sampaio E, Spoh TCL et al (2015) Activated microglia-induced deficits in excitatory synapses through IL-1??: implications for cognitive impairment in sepsis. Mol Neurobiol:653–663. doi:10.1007/s12035-014-8868-5

  95. Kacimi R, Giffard RG, Yenari MA (2011) Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways. J Inflamm 8:7. doi:10.1186/1476-9255-8-7

    Article  CAS  Google Scholar 

  96. Frister A, Schmidt C, Schneble N et al (2014) Phosphoinositide 3-Kinase ?? Affects LPS-induced disturbance of blood-brain barrier via lipid kinase-independent control of cAMP in microglial cells. Neruomol Med:704–713. doi:10.1007/s12017-014-8320-z

  97. Michels M, Vieira LGDA, Florentino D et al (2015) CD40–CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Mol Med 21:226. doi:10.2119/molmed.2015.00070

    Article  CAS  Google Scholar 

  98. Gao R, Kan MQ, Wang SG et al (2015) Disrupted tryptophan metabolism induced cognitive impairment in a mouse model of sepsis-associated encephalopathy. Inflammation. doi:10.1007/s10753-015-0279-x

    Google Scholar 

  99. Wilson JX, Dragan M (2005) Sepsis inhibits recycling and glutamate-stimulated export of ascorbate by astrocytes. Free Radic Biol Med 39:990–998. doi:10.1016/j.freeradbiomed.2005.05.020

    Article  CAS  PubMed  Google Scholar 

  100. Papadopoulos MC, Davies DC, Moss RF et al (2000) Pathophysiology of septic encephalopathy: a review. Crit Care Med 28:3019–3024

    Article  CAS  PubMed  Google Scholar 

  101. Fernandes A, Silva RFM, Falcao AS et al (2004) Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J Neuroimmunol 153:64–75. doi:10.1016/j.jneuroim.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  102. Galiano M, Liu ZQ, Kalla R et al (2001) Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 14:327–341. doi:10.1046/j.0953-816X.2001.01647.x

    Article  CAS  PubMed  Google Scholar 

  103. Görg B, Bidmon HJ, Keitel V et al (2006) Inflammatory cytokines induce protein tyrosine nitration in rat astrocytes. Arch Biochem Biophys 449:104–114. doi:10.1016/j.abb.2006.02.012

    Article  PubMed  CAS  Google Scholar 

  104. Wang Y, Chen ZJ, Zhang Y et al (2014) Mitochondrial biogenesis of astrocytes is increased under experimental septic conditions. Chin Med J 127:1837–1842. doi:10.3760/cma.j.issn.0366-6999.20131934

    CAS  PubMed  Google Scholar 

  105. Zhou JJ, Cheng C, Qiu Z et al (2015) Decreased connexin 43 in astrocytes inhibits the neuroinflammatory reaction in an acute mouse model of neonatal sepsis. Neurosci Bull 31:763–768. doi:10.1007/s12264-015-1561-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alfonso-Loeches S, Urena-Peralta J, Morillo-Bargues MJ et al (2015) Ethanol-induced TLR4/NLRP3 neuroinflammatory response in microglial cells promotes leukocyte infiltration across the BBB. Neurochem Res. doi:10.1007/s11064-015-1760-5

    PubMed  Google Scholar 

  107. Yang CH, Kao MC, Shih PC et al (2015) Simvastatin attenuates sepsis-induced blood-brain barrier integrity loss. J Surg Res 194:591–598. doi:10.1016/j.jss.2014.11.030

    Article  CAS  PubMed  Google Scholar 

  108. Li R, Tong J, Tan Y et al (2015) Low molecular weight heparin prevents lipopolysaccharide induced-hippocampus-dependent cognitive impairments in mice. Int J Clin Exp Pathol 8:8881–8891

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yeh CT, Kao MC, Chen CH, Huang CJ (2015) Platonin preserves blood-brain barrier integrity in septic rats. Acta Anaesthesiol Taiwanica 53:12–15. doi:10.1016/j.aat.2015.02.001

    Article  Google Scholar 

  110. Esen F, Erdem T, Aktan D et al (2005) Effect of magnesium sulfate administration on blood-brain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study. Crit Care 9:R18–R23. doi:10.1186/cc3004

    Article  PubMed  Google Scholar 

  111. Banks WA, Gray AM, Erickson MA et al (2015) Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation 12:223. doi:10.1186/s12974-015-0434-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liu L, Xie K, Chen H et al (2014) Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res:1–2. doi:10.1016/j.brainres.2014.09.030

  113. Kohlhauer M, Lidouren F, Remy-Jouet I et al (2015) Hypothermic Total liquid ventilation is highly protective through cerebral hemodynamic preservation and sepsis-like mitigation after Asphyxial cardiac arrest. Crit Care Med 43:1. doi:10.1097/CCM.0000000000001160

    Article  CAS  Google Scholar 

  114. Michels M, Vieira AS, Vuolo F et al (2014) The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun. doi:10.1016/j.bbi.2014.07.002

    PubMed  Google Scholar 

  115. Michels M, Vieira AS, Vuolo F et al (2015) The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun 43:54–59. doi:10.1016/j.bbi.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  116. Aerts J, Vandenbroucke RE, Dera R et al (2015) Synthesis and validation of a Hydroxypyrone-based, potent, and specific matrix metalloproteinase-12 inhibitor with anti-inflammatory activity in vitro and in vivo. Mediat Inflamm. doi:10.1155/2015/510679

    Google Scholar 

  117. Xiang J, Alesi GN, Zhou N, Keep RF (2012) Protective effects of isothiocyanates on blood-CSF barrier disruption induced by oxidative stress. Am J Physiol Regul Integr Comp Physiol 303:R1–R7. doi:10.1152/ajpregu.00518.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth). Laboratory of Neurosciences (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). Its research is supported by grants from CNPq (JQ, FP, TB, FD-P), FAPESC (JQ); Instituto Cérebro e Mente (JQ), UNESC (JQ, TB, FD-P) and UNISUL (FP). JQ and FP are 1A and TB and FP are level 2 CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrícia Petronilho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danielski, L.G., Giustina, A.D., Badawy, M. et al. Brain Barrier Breakdown as a Cause and Consequence of Neuroinflammation in Sepsis. Mol Neurobiol 55, 1045–1053 (2018). https://doi.org/10.1007/s12035-016-0356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0356-7

Keywords

Navigation