Skip to main content

Advertisement

Log in

Oxidative Mechanisms of Brain Dysfunction During Sepsis

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress has drawn a lot of attention in the past few decades, since it has been reported to participate in the mechanism of many diseases. Therefore, it seemed to be a good rationale to aim oxidative stress on therapeutic research. Sepsis is a complex systemic syndrome characterized by an imbalance between pro- and anti-inflammatory responses to a pathogen; its pathophysiology is a dynamic process which involves components of the immune system, the coagulation pathway, parenchymal cells, and the endocrine and metabolic pathways. It is well characterized that oxidative stress plays a crucial role in sepsis development, but the relation between central nervous system dysfunction and oxidative stress during sepsis is not well understood. Thus, we here summarize the current knowledge on the role of free radicals in the development of brain dysfunction in sepsis focusing on oxidative damage and the redox control of brain inflammatory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP-1:

Activator protein-1

ARE:

Antioxidant response element

ATP:

Adenosine triphosphate

BBB:

Blood-brain-barrier

CAT:

Catalase

CLP:

Cecal ligation and perforation

CNS:

Central nervous system

DNA:

Deoxyribonucleic acid

ERK:

Extracellular signal-regulated kinase

ETC:

Electron transport chain

H2O2 :

Hydrogen peroxide

IKK:

NF-κB (IκB)-kinase

IL-1:

Interleukin-1

IL-1RA:

Interleukin-1 receptor antagonist

IL-1β:

Interleukin-1β

IL-2:

Interleukin-2

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

IRAK1:

Interleukin-1 receptor-associated kinase 1

IRAK4:

Interleukin-1 receptor-associated kinase 4

JNK:

Jun N-terminal kinase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemotactic protein-1

MKP-1:

MAPK phosphatase-1

MMP:

Matrix metalloproteinases

mRNA:

Messenger ribonucleic acid

MyD88:

Myeloid differentiation primary-response protein 88

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor kappa-B

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NrF2:

Nuclear factor-E2 related factor 2

OXPHOS:

Oxidative phosphorylation

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SE:

Septic encephalopathy

SOD:

Superoxide dismutase

TAK1:

Transforming growth factor-β-activated kinase

TLR:

Toll-like receptors

TNF-α:

Tumor necrosis factor-alpha

TRAF6:

Tumor necrosis factor receptor-associated factor 6

XO:

Xanthine oxidase

References

  1. Commoner B, Townsend J, Pake G (1954) Free radicals in biological materials. Nature 174:689–691

    CAS  PubMed  Google Scholar 

  2. Gutteridge JM, Halliwell B (2000) Free radicals, antioxidants in the year 2000. A historical look to the future. Ann NY Acad Sci 899:136–147

    Article  CAS  PubMed  Google Scholar 

  3. Ross D, Moldeus P (1991) Antioxidant defense systems and oxidative stress. In: Vigo-Pelfrey C (ed) Membrane lipid oxidation. Boca Raton, CRC Press

    Google Scholar 

  4. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214

    CAS  Google Scholar 

  5. Jezek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503

    CAS  PubMed  Google Scholar 

  6. Zhang H, Slutsky AS, Vincent JL (2000) Oxygen free radicals in ARDS, septic shock and organ dysfunction. Intensive Care Med 26:474–476

    CAS  PubMed  Google Scholar 

  7. Victor VM, De La Fuente M (2003) Immune cells redox state from mice with endotoxin-induced oxidative stress. Involvement of NF-kappaB. Free Radic Res 37:19–27

    CAS  PubMed  Google Scholar 

  8. de Souza LF, Ritter C, Pens Gelain D et al (2007) Mitochondrial superoxide production is related to the control of cytokine release from peritoneal macrophage after antioxidant treatment in septic rats. J Surg Res 141:252–256

    PubMed  Google Scholar 

  9. Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150

    CAS  PubMed  Google Scholar 

  10. Hopkins RO, Weaver LK, Pope D et al (1999) Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160:50–56

    CAS  PubMed  Google Scholar 

  11. Angus DC, Musthafa AA, Clermont G et al (2001) Quality-adjusted survival in the first year after the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1389–1394

    CAS  PubMed  Google Scholar 

  12. Granja C, Dias C, Costa-Pereira A et al (2004) Quality of life of survivors from severe sepsis and septic shock may be similar to that of others who survive critical illness. Crit Care 8:91–98

    Google Scholar 

  13. Heyland DK, Hopman W, Coo H et al (2000) Long-term health-related quality of life in survivors of sepsis. Short Form 36: a valid and reliable measure of health-related quality of life. Crit Care Med 28:3599–3605

    CAS  PubMed  Google Scholar 

  14. Kumar S, Leaper DJ (2005) Basic science of sepsis. Surgery 23:272–277

    Google Scholar 

  15. Ritter C, Andrades M, Frota Júnior ML et al (2003) Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med 29:1782–1789

    PubMed  Google Scholar 

  16. Carrico CJ, Meakins JL, Marshall JC et al (1986) Multiple-organ-failure syndrome. Arch Surg 121:196–208

    CAS  PubMed  Google Scholar 

  17. Sprung CL, Peduzzi PN, Shatney CH et al (1990) Impact of encephalopathy on mortality in the sepsis syndrome. Crit Care Med 18:801–806

    CAS  PubMed  Google Scholar 

  18. Young GB, Bolton CF, Austin TW et al (1990) The encephalopathy associated with septic illness. Clin Invest Med 13:297–304

    CAS  PubMed  Google Scholar 

  19. Bleck TP, Smith MC, Pierre-Louis SJ et al (1993) Neurologic complications of critical medical illnesses. Crit Care Med 21:98–103

    CAS  PubMed  Google Scholar 

  20. Straver JS, Keunen RWM, Stam CJ et al (1998) Nonlinear analysis of EEG in septic encephalopathy. Neurol Res 20:100–106

    CAS  PubMed  Google Scholar 

  21. Milbrandt EB, Angus DC (2006) Bench-to-bedside review: critical illness-associated cognitive dysfunction-mechanisms, markers, and emerging therapeutics. Crit Care 10:238

    PubMed  Google Scholar 

  22. Ebersoldt M, Sharshar T, Annane D (2007) Sepsis associated delirium. Intensive Care Med 33:941–950

    PubMed  Google Scholar 

  23. Barichello T, Martins MR, Reinke A et al (2005) Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med 33:221–223

    PubMed  Google Scholar 

  24. Hopkins RO (2007) Sepsis, oxidative stress, and brain injury. Crit Care Med 35:2233–2234

    PubMed  Google Scholar 

  25. Gordon SM, Jackson JC, Ely EW et al (2004) Clinical identification of cognitive impairment in ICU survivors: insights for intensivists. Intensive Care Med 30:1997–2008

    PubMed  Google Scholar 

  26. Granja C, Lopes A, Moreira S et al (2005) Patients’ recollections of experiences in the intensive care unit may affect their quality of life. Crit Care 9:96–109

    Google Scholar 

  27. Hopkins RO, Weaver LK, Collingridge D et al (2005) Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 171:340–347

    PubMed  Google Scholar 

  28. Hough CL, Curtis JR (2005) Long-term sequelae of critical illness: memories and health-related quality of life. Crit Care 9:145–146

    PubMed  Google Scholar 

  29. Jackson JC, Gordon SM, Ely EW et al (2004) Research issues in the evaluation of cognitive impairment in intensive care unit survivors. Intensive Care Med 30:2009–2016

    PubMed  Google Scholar 

  30. Freund HR, Muggia-Sullam M, Peiser J et al (1985) Brain neurotransmitter profile is deranged during sepsis and septic encephalopathy in the rat. J Surg Res 38:267–271

    CAS  PubMed  Google Scholar 

  31. Pollard V, Prough DS, Deyo DJ et al (1997) Cerebral blood flow during experimental endotoxemia in volunteers. Crit Care Med 25:1700–1706

    CAS  PubMed  Google Scholar 

  32. Licinio J, Mastronardi C, Wong M (2008) Pharmacogenomics of neuroimmune interactions in human psychiatric disorders. Exp Physiol 92:807–811

    Google Scholar 

  33. Wang CX, Shuaib A (2002) Involvement of inflammatory cytokines in central system injury. Prog Neurobiol 67:161–172

    CAS  PubMed  Google Scholar 

  34. Semmler A, Hermann S, Mormann F et al (2008) Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation 5:38

    PubMed  Google Scholar 

  35. Swiergiel AH, Dunn AJ (2006) Feeding, exploratory, anxiety and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behav Brain Res 171:94–108

    CAS  PubMed  Google Scholar 

  36. Elenkov IJ, Iezzoni DG, Daly A et al (2005) Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation 12:255–269

    CAS  PubMed  Google Scholar 

  37. Mrak RE, Griffin WS (2005) Potential inflammatory biomarkers in Alzheimer’s disease. J Alzheimers Dis 8:369–375

    CAS  PubMed  Google Scholar 

  38. Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13

    CAS  PubMed  Google Scholar 

  39. Torreilles F, Salman-Tabcheh S, Guerin MC et al (1999) Neurodegenerative disorders: the role of peroxynitrite. Brain Res Rev 30:153–163

    CAS  PubMed  Google Scholar 

  40. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    CAS  PubMed  Google Scholar 

  41. Saraste M (1999) Oxidative phosphorylation at the fin de siècle. Science 283:1488–1493

    CAS  PubMed  Google Scholar 

  42. Muravchick S, Levy RJ (2006) Clinical implications of mitochondrial dysfunction. Anesthesiology 105:819–837

    CAS  PubMed  Google Scholar 

  43. Krayl M, Lim JH, Martin F et al (2207) A cooperative action of the ATP-dependent import motor complex and the inner membrane potential drives mitochondrial preprotein import. Mol Cell Biol 27:411–425

    Google Scholar 

  44. Kelso GF, Porteous CM, Hughes G et al (2002) Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann N Y Acad Sci 959:263–274

    CAS  PubMed  Google Scholar 

  45. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    CAS  PubMed  Google Scholar 

  46. Sugioka K, Nakano M, Totsune-Nakano H et al (1988) Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochim Biophys Acta 936:377–385

    CAS  PubMed  Google Scholar 

  47. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    CAS  PubMed  Google Scholar 

  48. Becker LB, Vanden Hoek TL, Shao ZH et al (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:2240–2246

    Google Scholar 

  49. Lesnefsky EJ, Moghaddas S, Tandler B et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089

    CAS  PubMed  Google Scholar 

  50. Chen Q, Vazquez EJ, Moghaddas S et al (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    CAS  PubMed  Google Scholar 

  51. Riedel W, Lang U, Oetjen U et al (2003) Inhibition of oxygen radical formation by methylene blue, aspirin, or alpha-lipoic acid, prevents bacterial-lipopolysaccharide-induced fever. Mol Cell Biochem 247:83–94

    CAS  PubMed  Google Scholar 

  52. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  PubMed  Google Scholar 

  53. Beal MF (1996) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Google Scholar 

  54. Gu M, Gash MT, Mann VM et al (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389

    CAS  PubMed  Google Scholar 

  55. Nunomura A, Perry G, Aliev G et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    CAS  PubMed  Google Scholar 

  56. Mattiazzi M, D’Aurelio M, Gajewski CD et al (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277:29626–29633

    CAS  PubMed  Google Scholar 

  57. Okado-Matsumoto A, Fridovich I (2002) Amyotrophic lateral sclerosis: a proposed mechanism. Proc Natl Acad Sci USA 99:9010–9014

    CAS  PubMed  Google Scholar 

  58. Linares E, Nakao LS, Augusto O et al (2003) Studies of in vivo radical production by lipopolysaccharide: potential role of iron mobilized from iron-nitrosyl complexes. Free Radic Biol Med 34:766–773

    CAS  PubMed  Google Scholar 

  59. Sato K, Kadiiska MB, Ghio AJ et al (2002) In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: a model for ARDS. FASEB J 16:1713–1720

    CAS  PubMed  Google Scholar 

  60. Batra S, Kumar R, Seema Kapoor AK et al (2000) Alterations in antioxidant status during neonatal sepsis. Ann Trop Paediatr 20:27–33

    CAS  PubMed  Google Scholar 

  61. Ortolani O, Conti A, De Gaudio AR et al (2000) The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock. Am J Respir Crit Care Med 161:1907–1911

    CAS  PubMed  Google Scholar 

  62. Bayir H et al (2005) Reactive oxygen species. Crit Care Med 33:498–501

    Google Scholar 

  63. Sharshar T, Annane D, de la Grandmaison GL et al (2004) The neuropathology of septic shock. Brain Pathol 14:21–23

    Article  PubMed  Google Scholar 

  64. Wilson JX, Young GB (2003) Progress in clinical neurosciences: sepsis-associated encephalopathy: evolving concepts. Can J Neurol Sci 30:98–105

    PubMed  Google Scholar 

  65. Goris RJA (1990) Mediators of multiple organ failure. Intensive Care Med 16:192–196

    Google Scholar 

  66. Bardenheuer HJ, Weigand MA (1999) Leukocyte endothelial interactions a double edged sword. Cardiovasc Res 41:511–513

    CAS  PubMed  Google Scholar 

  67. Weigand MA, Schmidt H, Pourmahmoud M et al (1999) Circulating intercellular adhesion molecule-1 as an early predictor of hepatic failure in patients with septic shock. Crit Care Med 27:2656–2661

    CAS  PubMed  Google Scholar 

  68. Papadopoulos MC, Davies DC, Moss RF et al (2000) Pathophysiology of septic encephalopathy: a review. Crit Care Med 28:3019–3024

    CAS  PubMed  Google Scholar 

  69. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    CAS  PubMed  Google Scholar 

  70. Bal-Price A, Mathias A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80:73–80

    CAS  PubMed  Google Scholar 

  71. Doise JM, Aho LS, Quenot JP et al (2008) Plasma antioxidant status in septic critically ill patients: a decrease over time. Fundam Clin Pharmacol 22:203–209

    CAS  PubMed  Google Scholar 

  72. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  73. Park KW, Lee HG, Jin BK et al (2007) Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp Mol Med 39:812–819

    CAS  PubMed  Google Scholar 

  74. Wang ZJ, Liang CL, Li GM et al (2006) Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices. Chem Biol Interact 163:207–217

    CAS  PubMed  Google Scholar 

  75. Vajragupta O, Boonyarat C, Murakami Y et al (2006) A novel neuroprotective agent with antioxidant and nitric oxide synthase inhibitory action. Free Radic Res 40:685–695

    CAS  PubMed  Google Scholar 

  76. Capuron L, Lamarque D, Dantzer R et al (1999) Attentional and mnemonic deficits associated with infectious disease in humans. Psychol Med 29:291–297

    CAS  PubMed  Google Scholar 

  77. Barichello T, Fortunato JJ, Vitali AM et al (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34:886–889

    PubMed  Google Scholar 

  78. D’Avila JC, Santiago AP, Amâncio RT et al (2008) Sepsis induces brain mitochondrial dysfunction. Crit Care Med 36:1925–1932

    PubMed  Google Scholar 

  79. Lindner A, Kappen K, Zierz S (1998) Acute encephalopathy, polyneuropathy and myopathy in the critically ill patient. Internist (Berl) 39:485–492

    CAS  Google Scholar 

  80. Martin-Villalba A, Herr I, Jeremias I et al (1999) CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci 19:3809–3817

    CAS  PubMed  Google Scholar 

  81. Anda T, Yamashita H, Khalid H et al (1997) Effect of tumor necrosis factor-alpha on the permeability of bovine brain microvessel endothelial cell monolayers. Neurol Res 19:369–376

    CAS  PubMed  Google Scholar 

  82. Huynh HK, Dorovini-Zis K (1993) Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells. Am J Pathol 142:1265–1278

    CAS  PubMed  Google Scholar 

  83. Tureen J (1995) Effect of recombinant human tumor necrosis factor-alpha on cerebral oxygen uptake, cerebrospinal fluid lactate, and cerebral blood flow in the rabbit: role of nitric oxide. J Clin Invest 95:1086–1091

    CAS  PubMed  Google Scholar 

  84. Machiedo GW, Powell RJ, Rush BF Jr et al (1989) The incidence of red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-system organ failure. Arch Surg 124:1386–1389

    CAS  PubMed  Google Scholar 

  85. Todd JC, Poulos ND, Davidson LW et al (1993) Role of the leukocyte in endotoxin-mediated alterations of the red cell membrane. Second place winner of the Conrad Jobst Award in the Gold Medal paper competition. Am Surg 59:9–12

    PubMed  Google Scholar 

  86. Ismail NH, Cohn EJ Jr, Mollitt DL (1997) Nitric oxide synthase inhibition negates septicinduced alterations in cytoplasmic calcium homeostasis and membrane dynamics. Am Surg 63:20–23

    CAS  PubMed  Google Scholar 

  87. Puranapanda V, Hinslaw LB, O’Rear EA et al (1987) Erythrocyte deformability in canine septic shock and the efficacy of pentoxifylline and a leukotriene antagonist. Proc Soc Exp Biol Med 185:206–210

    CAS  PubMed  Google Scholar 

  88. Powell RJ, Machiedo GW, Rush BF Jr et al (1991) Oxygen free radicals: effects on red cell deformability in sepsis. Crit Care Med 19:732–735

    CAS  PubMed  Google Scholar 

  89. Langenfeld JE, Machiedo GW, Lyons M et al (1994) Correlation between red blood cell deformability and changes in hemodynamic function. Surgery 116:859–867

    CAS  PubMed  Google Scholar 

  90. Baskurt OK, Gelmont D, Meiselman HJ (1998) Red blood cell deformability in sepsis. Am J Respir Crit Care Med 157:421–427

    CAS  PubMed  Google Scholar 

  91. Papadopoulos MC, Moss RF, Lamb FJ et al (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci 96:461–466

    CAS  PubMed  Google Scholar 

  92. Bowton DL, Bertels NH, Prough DS et al (1989) Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med 17:399–403

    Article  CAS  PubMed  Google Scholar 

  93. Maekawa T, Fujii Y, Sadamitsu D et al (1991) Cerebral circulation and metabolism in patients with septic encephalopathy. Am J Emerg Med 9:139–143

    CAS  PubMed  Google Scholar 

  94. Brealey D, Singer M (2003) Mitochondrial dysfunction in sepsis. Curr Infect Dis Rep 5:365–371

    PubMed  Google Scholar 

  95. Davies NA, Cooper CE, Stidwill R et al (2003) Inhibition of mitochondrial respiration during early stage sepsis. Adv Exp Med Biol 530:725–736

    PubMed  Google Scholar 

  96. Brealey D, Karyampudi S, Jacques TS et al (2004) Mitochondrial dysfunction in a long-term rodent of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286:R491–R497

    CAS  PubMed  Google Scholar 

  97. Carreras MC, Franco MC, Peralta JG et al (2004) Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol Aspects Med 25:125–139

    CAS  PubMed  Google Scholar 

  98. Svistunenko DA, Davies N, Brealey D et al (2006) Mitochondrial dysfunction in patients with severe sepsis: na EPR interrogation of individual respiratory chain components. Biochim Biophys Acta 1757:262–272

    CAS  PubMed  Google Scholar 

  99. Comim CM, Rezin GT, Scaini G et al (2008) Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion 8:313–318

    CAS  PubMed  Google Scholar 

  100. Cauwe B, Van Den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    CAS  PubMed  Google Scholar 

  101. Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50:329–339

    PubMed  Google Scholar 

  102. Woo MS, Park JS, Choi IY et al (2008) Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 106:770–780

    CAS  PubMed  Google Scholar 

  103. Chandra A, Enkhbaatar P, Nakano Y et al (2006) Sepsis: emerging role of nitric oxide and selectins. Clinics 61:71–76

    PubMed  Google Scholar 

  104. Connolly ES Jr, Winfree CJ, Springer TA et al (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97:209–216

    CAS  PubMed  Google Scholar 

  105. Jacob A, Hensley LK, Safratowich BD et al (2007) The role of the complement cascade in endotoxin-induced septic encephalopathy. Lab Invest 87:1186–1194

    CAS  PubMed  Google Scholar 

  106. Wilson JX, Young GB (2003) Sepsis-associated encephalopathy: evolving concepts. Can J Neurol Sci 30:98–105

    PubMed  Google Scholar 

  107. Kastenbauer S, Koedel U, Becker BF et al (2002) Oxidative stress in bacterial meningitis in humans. Neurology 58:186–191

    CAS  PubMed  Google Scholar 

  108. Harada S, Imaki T, Chikada N et al (1999) Distinct distribution and time-course changes in neuronal nitric oxide synthase and inducible NOS in the paraventricular nucleus following lipopolysaccharide injection. Brain Res 821:322–332

    CAS  PubMed  Google Scholar 

  109. Kugler P, Drenckhahn D (1996) Astrocytes and Bergmann glia as an important site of nitric oxide synthase I. Glia 16:165–173

    CAS  PubMed  Google Scholar 

  110. Yasuda Y, Tateishi N, Shimoda T et al (2004) Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 1021:20–31

    CAS  PubMed  Google Scholar 

  111. Thiemermann C (1997) Nitric oxide and septic shock. Gen Pharmacol 29:159–166

    CAS  PubMed  Google Scholar 

  112. Jacobs RA, Satta MA, Dahia PL et al (1997) Induction of nitric oxide synthase and interleukin-1beta, but not heme oxygenase, messenger rna in rat brain following peripheral administration of endotoxin. Brain Res Mol Brain Res 49:238–246

    CAS  PubMed  Google Scholar 

  113. Satta MA, Jacobs RA, Kaltsas GA et al (1998) Endotoxin induces interleukin-1beta and nitric oxide synthase MRNA in rat hypothalamus and pituitary. Neuroendocrinology 67:109–116

    CAS  PubMed  Google Scholar 

  114. Wong ML, Rettori V, al Shekhlee A et al (1996) Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat Med 2:581–584

    CAS  PubMed  Google Scholar 

  115. Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256

    CAS  PubMed  Google Scholar 

  116. Chao CC, Hu S, Molitor TW, Shaskan EG et al (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    CAS  PubMed  Google Scholar 

  117. Leist M, Volbracht C, Kuhnle S et al (1997) Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Mol Med 3:750–764

    CAS  PubMed  Google Scholar 

  118. Heneka MT, Loschmann PA, Gleichmann M et al (1998) Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-alpha/lipopolysaccharide. J Neurochem 71:88–94

    Article  CAS  PubMed  Google Scholar 

  119. Peterson PK, Hu S, Anderson WR et al (1994) Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis 170:457–460

    CAS  PubMed  Google Scholar 

  120. Bal-Price A, Brown GC (2000) Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 75:1455–1464

    CAS  PubMed  Google Scholar 

  121. Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    CAS  PubMed  Google Scholar 

  122. Lehner MD, Marx D, Boer R et al (2006) In vivo characterization of the novel imidazopyridine BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]3H-imidazo[, 5-b]yridine] a potent and highly selective inhibitor of inducible nitric-oxide synthase. J Pharmacol Exp Ther 317:181

    CAS  PubMed  Google Scholar 

  123. Metejovic M, Krouzecky A, Martinkova V et al (2004) Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21:458–465

    Google Scholar 

  124. Okamoto I, Abe M, Shibata K et al (2000) Evaluating the role of inducible nitric oxide synthase using a novel and selective inducible nitric oxide synthase inhibitor in septic lung injury produced by cecal ligation and puncture. Am J Respir Crit Care Med 162:716–722

    CAS  PubMed  Google Scholar 

  125. Strunk V, Hahnenkamp K, Schneuing M et al (2001) Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilatation. Anesth Analg 92:681–687

    CAS  PubMed  Google Scholar 

  126. Cauweis A (2007) Nitric oxide in shock. Kidney Int 72:557–565

    Google Scholar 

  127. Squadrito F, Altavilla D, Squadrito G et al (1999) Recombinant human erythropoietin inhibits iNOS activity and reverts vascular dysfunction in splanchnic artery occlusion shock. Br J Phamacol 127:482–488

    CAS  Google Scholar 

  128. Akimoto T, Kusano E, Muto S (1999) et al. (1999) The effect of erythropoietin on interleukin-1β mediated increase in nitric oxide synthesis in vascular smooth muscle cells. J Hypertens 17:1249–1256

    CAS  PubMed  Google Scholar 

  129. Genc K, Genc S, Baskin H et al (2006) Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes. Physiol Res 55:33–38

    CAS  PubMed  Google Scholar 

  130. Venters HD, Dantzer R, Kelley KW (2000) A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 23:175–180

    CAS  PubMed  Google Scholar 

  131. Heneka MT, Loschmann PA, Gleichmann M et al (1998) Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-alpha/lipopolysaccharide. J Neurochem 71:88–94

    Article  CAS  PubMed  Google Scholar 

  132. Hidaka K, Mitsuyama T, Furuno T et al (1997) The role of nitric oxide in human pulmonary artery endothelial cell injury mediated by neutrophils. Int Arch Allergy Immunol 114:336–342

    CAS  PubMed  Google Scholar 

  133. Matsuoka Y, Kitamura Y, Takahashi H et al (1999) Interferongamma plus lipopolysaccharide induction of delayed neuronal apoptosis in rat hippocampus. Neurochem Int 34:91–99

    CAS  PubMed  Google Scholar 

  134. Sharshar T, Gray F, de la Grandmaison F, Hopkinson NS et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    CAS  PubMed  Google Scholar 

  135. Breder CD, Hazuka C, Ghayur T et al (1994) Regional induction of tumor necrosis factor alpha expression in the mouse brain after systemic lipopolysaccharide administration. Proc Natl Acad Sci USA 91:11393–11397

    CAS  PubMed  Google Scholar 

  136. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    CAS  PubMed  Google Scholar 

  137. Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153–164

    CAS  PubMed  Google Scholar 

  138. Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–670

    CAS  PubMed  Google Scholar 

  139. Suzuki YJ, Nagase H, Nie K et al (2005) Redox control of growth factor signaling: recent advances in cardiovascular medicine. Antioxid Redox Signal 7:829–834

    CAS  PubMed  Google Scholar 

  140. Sharshar T, Hopkinson NS, Orlikowski D (2005) Science review: the brain in sepsis-culprit and victim. Crit Care 9:37–44

    PubMed  Google Scholar 

  141. Laflamme N, Souci G, Rivest S (2001) Circulating cell wall components derived from Gram-negative and not Gram-positive bacteria cause of a profound transcriptionnal activation of the gene Toll-like receptor 2 in the CNS. J Neurochem 70:648–657

    Google Scholar 

  142. Hoebe K, Jiang Z, Georgel P et al (2006) TLR signaling pathways: opportunities for activation and blockade in pursuit of therapy. Curr Pharm Des 12:4123–4134

    CAS  PubMed  Google Scholar 

  143. Krishnan J, Selvarajoo K, Tsuchiya M et al (2007) Toll-like receptor signal transduction. Exp Mol Med 39:421–438

    CAS  PubMed  Google Scholar 

  144. Tang SC, Arumugam TV, Xu X et al (2007) Pivotal role for neuronal tol-like receptors in schemic brain injury and functional deficits. Proc Natl Acad Sci USA 104:13798–13803

    CAS  PubMed  Google Scholar 

  145. Tang SC, Lathia JD, Selvaraj PK et al (2008) Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid β-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 213:114–121

    CAS  PubMed  Google Scholar 

  146. Dendorfer U, Oettgen P, Libermann TA (1994) Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Mol Cell Biol 14:4443–4454

    CAS  PubMed  Google Scholar 

  147. Waetzig V, Czeloth K, Hidding U et al (2005) C-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50:235–246

    PubMed  Google Scholar 

  148. Jang S, Kelley KW, Johnson RW (2008) Luteolin reduces IL-6 production in microglia by inhibiting JNK hosphorylation and activation of AP-1. Proc Natl Acad Sci USA 105:7534–7539

    CAS  PubMed  Google Scholar 

  149. Zheng LT, Ryu GM, Kwon BM et al (2008) Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur J Pharmacol 588:106–113

    CAS  PubMed  Google Scholar 

  150. Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases:mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    CAS  PubMed  Google Scholar 

  151. Yawata I, Takeuchi H, Doi Y et al (2008) Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci 82:1111–1116

    CAS  PubMed  Google Scholar 

  152. Zhou Y, Ling EA, Dheen ST (2007) Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J Neurochem 102:667–678

    CAS  PubMed  Google Scholar 

  153. Woo MS, Park JS, Choi IY et al (2008) Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 106:770–780

    CAS  PubMed  Google Scholar 

  154. Szczepanik AM, Ringheim GE (2003) IL-10 and glucocorticoids inhibit Abeta(1–42)- and lipopolysaccharide-induced pro-inflammatory cytokine and chemokine induction in the central nervous system. J Alzheimers Dis 5:105–117

    CAS  PubMed  Google Scholar 

  155. Clark AR (2003) MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids? J Endocrinol 178:5–12

    CAS  PubMed  Google Scholar 

  156. Eljaschewitsch E, Witting A, Mawrin C et al (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49:67–79

    CAS  PubMed  Google Scholar 

  157. Glosh M, Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 27:3213–3218

    Google Scholar 

  158. Thannickal VJ, Franburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  PubMed  Google Scholar 

  159. Marshall HE, Merchant K, Stamler JS (2000) Nitrosation and oxidation in the regulation of gene expression. FASEB J 14:1889–1900

    CAS  PubMed  Google Scholar 

  160. Nguyen T, Yang CS, Picket CB (2004) The pathways and molecular mechanism regulating NrF2 activation in response to chemical stress. Free Radic Biol Med 37:433–441

    CAS  PubMed  Google Scholar 

  161. Guzy RD, Hoyos B, Robin E et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    CAS  PubMed  Google Scholar 

  162. Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351–369

    CAS  PubMed  Google Scholar 

  163. Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–461

    CAS  PubMed  Google Scholar 

  164. Innamorato NG, Rojo AI, García-Yagüe AJ et al (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    CAS  PubMed  Google Scholar 

  165. Kraft AD, Lee JM, Johnson DA et al (2006) Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J Neurochem 98:1852–1865

    CAS  PubMed  Google Scholar 

  166. Min KJ, Kim JH, Jou I et al (2008) Adenosine induces hemeoxygenase-1 expression in microglia through the activation of phosphatidylinositol 3-kinase and nuclear factor E2-related factor 2. Glia 56:1028–1037

    PubMed  Google Scholar 

  167. Bhat NR, Zhang P, Lee JC et al (1998) Extracellular signalregulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641

    CAS  PubMed  Google Scholar 

  168. Bhat NR, Feinstein DL, Shen Q et al (2002) p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response elementbinding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem 277:29584–29592

    CAS  PubMed  Google Scholar 

  169. Koistinaho M, Kettunen MI, Goldsteins G et al (2002) Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc Natl Acad Sci USA 99:1610–1615

    CAS  PubMed  Google Scholar 

  170. Choi SH, Lee DY, Kim SU et al (2005) Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. J Neurosci 25:4082–4090

    CAS  PubMed  Google Scholar 

  171. Yoo BK, Choi JW, Han BH et al (2005) Role of MAPK/ERK1/2 in the glucose deprivation-induced death in immunostimulated astroglia. Neurosci Lett 376:171–176

    CAS  PubMed  Google Scholar 

  172. Ju C, Yoon KN, Oh YK et al (2000) Synergistic depletion of astrocytic glutathione by glucose deprivation and peroxynitrite: correlation with mitochondrial dysfunction and subsequent cell death. J Neurochem 74:1989–1998

    CAS  PubMed  Google Scholar 

  173. Shin CY, Jang ES, Choi JW et al (2002) Adenosine and purine nucleosides protect rat primary astrocytes from peroxynitrite-potentiated, glucose deprivationinduced death: preservation of intracellular ATP level. Exp Neurol 176:175–182

    CAS  PubMed  Google Scholar 

  174. Dang PMC, Morel F, Gougerot-Pocidalo MA et al (2003) Phosphorylation of the NADPH oxidase component p67phox by ERK2 and p38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42:4520–4526

    CAS  PubMed  Google Scholar 

  175. Kuan YH, Lin RH, Tsao LT et al (2005) Artocarpol A stimulation of superoxide anion generation in neutrophils involved the activation of PLC, PKC and p38 mitogen-activated PK signaling pathways. Br J Pharmacol 145:460–468

    CAS  PubMed  Google Scholar 

  176. Ruano D, Revilla E, Gavilan MP et al (2006) Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells’ degeneration induced by inflammatory processes after lipopolysaccharide injection. Neuroscience 140:1157–1168

    CAS  PubMed  Google Scholar 

  177. Zhu X, Mei M, Lee HG et al (2005) p38 activation mediates amyloid-beta cytotoxicity. Neurochem Res 30:791–796

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank UNESC (Brazil), FAPESC (Brazil) and CNPq (Brazil) which supported the studies of our group that are cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dal-Pizzol, F., Ritter, C., Cassol-Jr, O.J. et al. Oxidative Mechanisms of Brain Dysfunction During Sepsis. Neurochem Res 35, 1–12 (2010). https://doi.org/10.1007/s11064-009-0043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0043-4

Keywords

Navigation