Skip to main content

Advertisement

Log in

Neurotoxicity of Methylmercury in Isolated Astrocytes and Neurons: the Cytoskeleton as a Main Target

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In the present work, we focused on mechanisms of methylmercury (MeHg) toxicity in primary astrocytes and neurons of rats. Cortical astrocytes and neurons exposed to 0.5–5 μM MeHg present a link among morphological alterations, glutathione (GSH) depletion, glutamate dyshomeostasis, and cell death. Disrupted neuronal cytoskeleton was assessed by decreased neurite length and neurite/neuron ratio. Astrocytes presented reorganization of actin and glial fibrillary acidic protein (GFAP) networks and reduced cytoplasmic area. Glutamate uptake and Na+K+ATPase activity in MeHg-treated astrocytes were preserved; however, downregulated EAAC1-mediated glutamate uptake was associated with impaired Na+K+ATPase activity in neurons. Oxidative imbalance was found in astrocytes and neurons through increased 2′7′-dichlorofluorescein (DCF) production and misregulated superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GPX) activities. Glutathione (GSH) levels were downregulated in both astrocytes and neurons. MeHg reduced neuronal viability and induced caspase 3-dependent apoptosis together with downregulated PI3K/Akt pathway. In astrocytes, necrotic death was associated with increased TNF-α and JNK/MAPK activities. Cytoskeletal remodeling and cell death were fully prevented in astrocytes and neurons by GSH, but not melatonin or Trolox supplementation. These findings support a role for depleted GSH in the cytotoxicity of MeHg leading to disruption of the cytoskeleton and cell death. Moreover, in neurons, glutamate antagonists also prevented cytoskeletal disruption and neuronal death. We propose that cytoskeleton is an end point in MeHg cytotoxicity. Oxidative imbalance and glutamate mechanisms mediate MeHg cytoskeletal disruption and apoptosis in neurons. Otherwise, redox imbalance and glutamate-independent mechanisms disrupted the cytoskeleton and induced necrosis in MeHg-exposed astrocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bridges CC, Zalups RK (2010) Transport of inorganic mercury and methylmercury in target tissues and organs. J Toxicol Environ Health B Crit Rev 13(5):385–410

    Article  CAS  PubMed  Google Scholar 

  2. Antunes Dos Santos A, Appel Hort M, Culbreth M, López-Granero C, Farina M, Rocha JB, Aschner M (2016) Methylmercury and brain development: a review of recent literature. J Trace Elem Med Biol. doi: 10.1016/j.jtemb.2016.03.001

  3. Yang T et al. (2016) Protective effects of alpha-lipoic acid on MeHg-induced oxidative damage and intracellular Ca(2+) dyshomeostasis in primary cultured neurons. Free Radic Res 50(5):542–556

    Article  CAS  PubMed  Google Scholar 

  4. Patel E, Reynolds M (2013) Methylmercury impairs motor function in early development and induces oxidative stress in cerebellar granule cells. Toxicol Lett 222(3):265–272

    Article  CAS  PubMed  Google Scholar 

  5. Praline J et al. (2007) ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg 109(10):880–883

    Article  PubMed  Google Scholar 

  6. Sass JB, Haselow DT, Silbergeld EK (2001) Methylmercury-induced decrement in neuronal migration may involve cytokine-dependent mechanisms: a novel method to assess neuronal movement in vitro. Toxicol Sci 63(1):74–81

    Article  CAS  PubMed  Google Scholar 

  7. Choi BH (1989) The effects of methylmercury on the developing brain. Prog Neurobiol 32(6):447–470

    Article  CAS  PubMed  Google Scholar 

  8. Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134(1):82–106

    Article  CAS  PubMed  Google Scholar 

  9. Fini M, Giardino R (2003) In vitro and in vivo tests for the biological evaluation of candidate orthopedic materials: benefits and limits. J Appl Biomater Biomech 1(3):155–163

    CAS  PubMed  Google Scholar 

  10. Campellone KG (2010) Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J 277(11):2390–2402

    Article  CAS  PubMed  Google Scholar 

  11. Heimfarth L et al. (2012) Diphenyl ditelluride induces hypophosphorylation of intermediate filaments through modulation of DARPP-32-dependent pathways in cerebral cortex of young rats. Arch Toxicol 86(2):217–230

    Article  CAS  PubMed  Google Scholar 

  12. Heimfarth L et al. (2012) In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: implications of MAPK and Akt pathways. Toxicol Appl Pharmacol 264(2):143–152

    Article  CAS  PubMed  Google Scholar 

  13. Durham HD et al. (1996) Toxicity of replication-defective adenoviral recombinants in dissociated cultures of nervous tissue. Exp Neurol 140(1):14–20

    Article  CAS  PubMed  Google Scholar 

  14. Graff RD et al. (1997) Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons. Toxicol Appl Pharmacol 144(2):215–224

    Article  CAS  PubMed  Google Scholar 

  15. Moretto MB et al. (2005) Selenium compounds prevent the effects of methylmercury on the in vitro phosphorylation of cytoskeletal proteins in cerebral cortex of young rats. Toxicol Sci 85(1):639–646

    Article  CAS  PubMed  Google Scholar 

  16. Ponce RA et al. (1994) Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol 127(1):83–90

    Article  CAS  PubMed  Google Scholar 

  17. Cattani D et al. (2013) Congenital hypothyroidism alters the oxidative status, enzyme activities and morphological parameters in the hippocampus of developing rats. Mol Cell Endocrinol 375(1–2):14–26

  18. Loureiro SO et al. (2010) Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes. Brain Res 1355:151–164

    Article  CAS  PubMed  Google Scholar 

  19. Pierozan P et al. (2010) Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol 224(1):188–196

    Article  CAS  PubMed  Google Scholar 

  20. McMurray CT (2000) Neurodegeneration: diseases of the cytoskeleton? Cell Death Differ 7(10):861–865

    Article  CAS  PubMed  Google Scholar 

  21. Pierozan P et al. (2014) The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid. Exp Cell Res 322(2):313–323

    Article  CAS  PubMed  Google Scholar 

  22. Pierozan P et al. (2015) Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction. J Neurosci Res 93(2):268–284

    Article  CAS  PubMed  Google Scholar 

  23. Jiang J et al. (2010) Inhibition of nitric oxide-induced nuclear localization of CAPON by NMDA receptor antagonist in cultured rat primary astrocytes. Neurochem Int 56(4):561–568

    Article  CAS  PubMed  Google Scholar 

  24. Loureiro, S.O., et al. (2015) Crosstalk among disrupted glutamatergic and cholinergic homeostasis and inflammatory response in mechanisms elicited by proline in astrocytes. Mol Neurobiol

  25. de Lima Pelaez P et al. (2007) Branched-chain amino acids accumulating in maple syrup urine disease induce morphological alterations in C6 glioma cells probably through reactive species. Int J Dev Neurosci 25(3):181–189

    Article  PubMed  Google Scholar 

  26. Loureiro SO et al. (2013) Cytoskeleton of cortical astrocytes as a target to proline through oxidative stress mechanisms. Exp Cell Res 319(3):89–104

    Article  CAS  PubMed  Google Scholar 

  27. Baranes K et al. (2012) Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnol Bioeng 109(7):1791–1797

    Article  CAS  PubMed  Google Scholar 

  28. Frizzo ME et al. (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22(3):353–363

    Article  CAS  PubMed  Google Scholar 

  29. de Souza Wyse AT et al. (2000) Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 25(7):971–975

    Article  PubMed  Google Scholar 

  30. Tsakiris S (2001) Effects of L-phenylalanine on acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase activities in adult rat whole brain and frontal cortex. Z Naturforsch C 56(1–2):132–137

    CAS  PubMed  Google Scholar 

  31. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157(2):375–380

    Article  CAS  PubMed  Google Scholar 

  32. LeBel CP et al. (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104(1):17–24

    Article  CAS  PubMed  Google Scholar 

  33. Delwing D et al. (2003) Proline induces oxidative stress in cerebral cortex of rats. Int J Dev Neurosci 21(2):105–110

    Article  CAS  PubMed  Google Scholar 

  34. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  35. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  36. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145

    Article  CAS  PubMed  Google Scholar 

  37. Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34(3):249–270

    Article  CAS  PubMed  Google Scholar 

  38. Green, D.R. and F. Llambi (2015) Cell death signaling. Cold Spring Harb Perspect Biol. 7(12)

  39. Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15(6):362–374

    Article  CAS  PubMed  Google Scholar 

  40. Garcia, J.A. (2015), et al., Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus. Vet Comp Oncol

  41. Wilson C, Gonzalez-Billault C (2015) Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 9:381

    Article  PubMed  PubMed Central  Google Scholar 

  42. Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89(15–16):555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pierozan P et al. (2014) Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 281(8):2061–2073

    Article  CAS  PubMed  Google Scholar 

  44. Kritis AA et al. (2015) Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rose EM et al. (2009) Glutamate transporter coupling to Na,K-ATPase. J Neurosci 29(25):8143–8155

    Article  CAS  PubMed  Google Scholar 

  46. Rangel-Lopez E et al. (2015) Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain. Neuroscience 285:97–106

    Article  CAS  PubMed  Google Scholar 

  47. Schweinberger BM et al. (2014) Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na(+),K(+)-ATPase/Mg(2)(+)-ATPase activity and oxidative status of the offspring. Metab Brain Dis 29(1):153–160

    Article  CAS  PubMed  Google Scholar 

  48. Deng Y et al. (2014) Exploring cross-talk between oxidative damage and excitotoxicity and the effects of riluzole in the rat cortex after exposure to methylmercury. Neurotox Res 26(1):40–51

    Article  CAS  PubMed  Google Scholar 

  49. Aschner M, Rising L, Mullaney KJ (1996) Differential sensitivity of neonatal rat astrocyte cultures to mercuric chloride (MC) and methylmercury (MeHg): studies on K+ and amino acid transport and metallothionein (MT) induction. Neurotoxicology 17(1):107–116

    CAS  PubMed  Google Scholar 

  50. Fujimura M, Usuki F (2015) Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: in vitro and in vivo effects of TrkA pathway activators. Toxicol Appl Pharmacol 282(3):259–266

    Article  CAS  PubMed  Google Scholar 

  51. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5(1):1–17

    Article  CAS  PubMed  Google Scholar 

  52. Yao H, Han X (2014) The cardioprotection of the insulin-mediated PI3K/akt/mTOR signaling pathway. Am J Cardiovasc Drugs 14(6):433–442

    Article  CAS  PubMed  Google Scholar 

  53. Pi TW et al. (2015) In-situ atomic layer deposition of tri-methylaluminum and water on pristine single-crystal (in)GaAs surfaces: electronic and electric structures. Nanotechnology 26(16):164001

    Article  CAS  PubMed  Google Scholar 

  54. Lin L et al. (2015) IL-10 protects neurites in oxygen-glucose-deprived cortical neurons through the PI3K/Akt pathway. PLoS One 10(9):e0136959

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yin X et al. (2015) Downregulated AEG-1 together with inhibited PI3K/Akt pathway is associated with reduced viability of motor neurons in an ALS model. Mol Cell Neurosci 68:303–313

    Article  CAS  PubMed  Google Scholar 

  56. Chen L et al. (2014) Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3beta pathway in rats. Neurochem Int 66:27–32

    Article  CAS  PubMed  Google Scholar 

  57. Heimfarth L et al. (2013) Disrupted cytoskeletal homeostasis, astrogliosis and apoptotic cell death in the cerebellum of preweaning rats injected with diphenyl ditelluride. Neurotoxicology 34:175–188

    Article  CAS  PubMed  Google Scholar 

  58. Vazquez M, Velez D, Devesa V (2014) In vitro evaluation of inorganic mercury and methylmercury effects on the intestinal epithelium permeability. Food Chem Toxicol 74:349–359

    Article  CAS  PubMed  Google Scholar 

  59. Kim, M.S., et al. (2015) 2,8-Decadiene-1,10-diol inhibits lipopolysaccharide-induced inflammatory responses through inactivation of mitogen-activated protein kinase and nuclear factor-kappaB signaling pathway. Inflammation

  60. Alam, Q., et al. (2015) Inflammatory process in Alzheimer and Parkinson’s diseases: central role of cytokines. Curr Pharm Des

  61. Zhu, X., et al. (2015) Puerarin protects human neuroblastoma SH-SY5Y Cells against glutamate-induced oxidative stress and mitochondrial dysfunction. J Biochem Mol Toxicol

  62. Permpoonputtana, K., J.E. Porter, and P. Govitrapong (2015) Calcitonin gene-related peptide mediates an inflammatory response in Schwann cells via cAMP-dependent ERK signaling cascade. Life Sci

  63. Maiuri, A.R., et al. (2015) Calcium contributes to the cytotoxic interaction between diclofenac and cytokines. Toxicol Sci

  64. Mortimer D et al. (2008) Growth cone chemotaxis. Trends Neurosci 31(2):90–98

    Article  CAS  PubMed  Google Scholar 

  65. Perlson E et al. (2010) Retrograde axonal transport: pathways to cell death? Trends Neurosci 33(7):335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9(5):344–356

    Article  CAS  PubMed  Google Scholar 

  67. Kevenaar JT, Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Front Mol Neurosci 8:44

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bindokas VP, Miller RJ (1995) Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons. J Neurosci 15(11):6999–7011

    CAS  PubMed  Google Scholar 

  69. Bonfoco E et al. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92(16):7162–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pessoa-Pureur R, Heimfarth L, Rocha JB (2014) Signaling mechanisms and disrupted cytoskeleton in the diphenyl ditelluride neurotoxicity. Oxidative Med Cell Longev 2014:458601

    Article  Google Scholar 

  71. Funchal C et al. (2006) Diphenyl ditelluride- and methylmercury-induced hyperphosphorilation of the high molecular weight neurofilament subunit is prevented by organoselenium compounds in cerebral cortex of young rats. Toxicology 222(1–2):143–153

    Article  CAS  PubMed  Google Scholar 

  72. Ceccatelli S, Dare E, Moors M (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188(2):301–308

    Article  CAS  PubMed  Google Scholar 

  73. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  74. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267(16):4912–4916

    Article  CAS  PubMed  Google Scholar 

  75. Kaur P, Aschner M, Syversen T (2006) Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology 27(4):492–500

    Article  CAS  PubMed  Google Scholar 

  76. Dringen R (2000) Glutathione metabolism and oxidative stress in neurodegeneration. Eur J Biochem 267(16):4903

    Article  CAS  PubMed  Google Scholar 

  77. Seibt KJ et al. (2012) MK-801 alters Na+, K+-ATPase activity and oxidative status in zebrafish brain: reversal by antipsychotic drugs. J Neural Transm (Vienna) 119(6):661–667

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierozan, P., Biasibetti, H., Schmitz, F. et al. Neurotoxicity of Methylmercury in Isolated Astrocytes and Neurons: the Cytoskeleton as a Main Target. Mol Neurobiol 54, 5752–5767 (2017). https://doi.org/10.1007/s12035-016-0101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0101-2

Keywords

Navigation