Skip to main content
Log in

The Cardioprotection of the Insulin-Mediated PI3K/Akt/mTOR Signaling Pathway

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Apoptosis occurs frequently in myocardial infarction, oxidative stress injury, and ischemia/reperfusion injury, and plays a pivotal role in the development of heart diseases. Inhibition of apoptosis alone does not necessarily lead to meaningful rescue in terms of either cardiomyocyte survival or function. Activation of the PI3K/Akt signaling pathway induced by insulin not only inhibits cardiomyocyte apoptosis but also substantially preserves and even improves regional and overall cardiac function. Insulin can protect cardiomyocytes from apoptosis by regulating a number of signaling molecules, such as eNOS, FOXOs, Bad, GSK-3β, mTOR, NDRG2, and Nrf2, through activating PI3K and Akt. This review focuses on the protective mechanisms and targets of insulin identified in the prevention and treatment of myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

ARE:

Antioxidant responsive element

CNT1 and CNT2:

Concentrative nucleoside transporter 1 and 2

4E-BP1:

Eukaryotic initiation factor 4E binding protein 1

eIF4E:

Eukaryotic initiation factor 4E

eNOS:

Endothelial nitric oxide synthase

ENT2:

Equilibrative nucleoside transporter 2

FKBP12:

FK506-binding protein

FOXOs:

Forkhead transcription factors

GPCRs:

Seven transmembrane G protein-coupled receptors

GSK-3β:

Glycogen synthase kinase-3β

HO-1:

Heme oxygenase 1

IGF-1:

Insulin-like growth factor-1

IGF-1R:

IGF-1 receptor

ILK:

Integrin-linked kinase

IPC:

Ischemic preconditioning

I/R:

Ischemia/reperfusion

IRS-1:

Insulin receptor substrate-1

IRSs:

Insulin receptor substrates

mPTP:

Mitochondrial permeability transition pore

mTOR:

Mammalian target of rapamycin

mTORC1/2:

mTOR complexes 1/2

NDRG2:

N-myc downstream-regulated gene 2

NFAT3:

Calcineurin-related nuclear factor activation transcription 3

Nrf2:

Transcription factor-E2-related factor 2

PDK1:

Phosphoinositide-dependent kinase-1

PH:

Pleckstrin homology

PHLPP:

PH domain and leucine rich repeat protein phosphatases

PIKK:

Phosphatidylinositol kinase-like kinases

PI3K/Akt:

Phosphoinositide 3-kinase/protein kinase B

PIP3:

Phosphatidylinositol (3, 4, 5)-triphosphate

PIP2:

Phosphatidylinositol (4, 5)-bisphosphate

PP2A:

Protein phosphatase 2A

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

ROS:

Reactive oxygen species

RTK:

Receptors tyrosine kinases

SHIP:

SH2 domain-containing inositol-polyphosphate 5′-phosphatase

S6K1:

p70 S6 kinase 1

VEGF:

Vascular endothelial growth factor

References

  1. Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, Ogawa W, del Monte F, Gwathmey JK, Grazette L, Hemmings BA, Kass DA, Champion HC, Rosenzweig A. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest. 2005;115:2128–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc Res. 2000;45:630–41.

    Article  CAS  PubMed  Google Scholar 

  3. Heusch G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet. 2013;381:166–75.

    Article  PubMed  Google Scholar 

  4. Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, Kiriazis H, Cemerlang N, Tan JW, Tham YK, Franke TF, Qian H, Bogoyevitch MA, Woodcock EA, Febbraio MA, Gregorevic P, McMullen JR. Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail. 2012;5:523–34.

    Article  CAS  PubMed  Google Scholar 

  5. Ng KW, Allen ML, Desai A, Macrae D, Pathan N. Cardioprotective effects of insulin: how intensive insulin therapy may benefit cardiac surgery patients. Circulation. 2012;125:721–8.

    Article  PubMed  Google Scholar 

  6. Iliadis F, Kadoglou N, Didangelos T. Insulin and the heart. Diabetes Res Clin Pract. 2011;93(Suppl 1):S86–91.

    Article  CAS  PubMed  Google Scholar 

  7. Fu F, Ji L, Liu W, Yang W, Wang J, Zhang H, Gao F. Experimental research: early but not late insulin treatment improves left ventricular remodelling and cardiac function induced by myocardial infarction in rats. Heart. 2011;97(Suppl 3):A8.

    Google Scholar 

  8. Laustsen PG, Russell SJ, Cui L, Entingh-Pearsall A, Holzenberger M, Liao R, Kahn CR. Essential role of insulin and insulin-like growth factor 1 receptor signaling in cardiac development and function. Mol Cell Biol. 2007;27:1649–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy. Pharmacol Ther. 2012;136:175–85.

    Article  CAS  PubMed  Google Scholar 

  10. Morisco C, Condorelli G, Trimarco V, Bellis A, Marrone C, Condorelli G, Sadoshima J, Trimarco B. Akt mediates the cross-talk between beta-adrenergic and insulin receptors in neonatal cardiomyocytes. Circ Res. 2005;96:180–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wang M, Sun GB, Sun X, Wang HW, Meng XB, Qin M, Sun J, Luo Y, Sun XB. Cardioprotective effect of salvianolic acid B against arsenic trioxide-induced injury in cardiac H9c2 cells via the PI3K/Akt signal pathway. Toxicol Lett. 2013;216:100–7.

    Article  CAS  PubMed  Google Scholar 

  12. Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W, Nagai R, Komuro I. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation. 2000;102:2873–9.

    Article  CAS  PubMed  Google Scholar 

  13. Si R, Tao L, Zhang HF, Yu QJ, Zhang R, Lv AL, Zhou N, Cao F, Guo WY, Ren J, Wang HC, Gao F. Survivin: a novel player in insulin cardioprotection against myocardial ischemia/reperfusion injury. J Mol Cell Cardiol. 2011;50:16–24.

    Article  CAS  PubMed  Google Scholar 

  14. Harney JA, Rodgers RL. Insulin-like stimulation of cardiac fuel metabolism by physiological levels of glucagon: involvement of PI3K but not cAMP. Am J Physiol Endocrinol Metab. 2008;295:E155–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yu Q, Gao F, Ma XL. Insulin says NO to cardiovascular disease. Cardiovasc Res. 2011;89:516–24.

    Article  CAS  PubMed  Google Scholar 

  16. Mehrhof FB, Müller FU, Bergmann MW, Li P, Wang Y, Schmitz W, Dietz R, von Harsdorf R. In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation. 2001;104:2088–94.

    Article  CAS  PubMed  Google Scholar 

  17. Hu X, Xu C, Zhou X, Cui B, Lu Z, Jiang H. PI3K/Akt signaling pathway involved in cardioprotection of preconditioning with high mobility group box 1 protein during myocardial ischemia and reperfusion. Int J Cardiol. 2011;150:222–3.

    Article  PubMed  Google Scholar 

  18. Ha T, Hua F, Liu X, Ma J, McMullen JR, Shioi T, Izumo S, Kelley J, Gao X, Browder W, Williams DL, Kao RL, Li C. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc Res. 2008;78:546–53.

    Article  CAS  PubMed  Google Scholar 

  19. Cao Z, Ren D, Ha T, Liu L, Wang X, Kalbfleisch J, Gao X, Kao R, Williams D, Li C. CpG-ODN, the TLR9 agonist, attenuates myocardial ischemia/reperfusion injury: involving activation of PI3K/Akt signaling. Biochim Biophys Acta. 2013;1832:96–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res. 2009;82:250–60.

    Article  CAS  PubMed  Google Scholar 

  21. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J, Riggi L, Kang PM, Izumo S. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway. J Biol Chem. 2004;279:4782–93.

    Article  CAS  PubMed  Google Scholar 

  22. Waardenberg AJ, Bernardo BC, Ng DC, Shepherd PR, Cemerlang N, Sbroggiò M, Wells CA, Dalrymple BP, Brancaccio M, Lin RC, McMullen JR. Phosphoinositide 3-kinase (PI3K(p110alpha)) directly regulates key components of the Z-disc and cardiac structure. J Biol Chem. 2011;286:30837–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 2006;20:3347–65.

    Article  CAS  PubMed  Google Scholar 

  24. Vadlakonda L, Dash A, Pasupuleti M, Anil Kumar K, Reddanna P. The paradox of Akt-mTOR interactions. Front Oncol. 2013;3:165.

    PubMed Central  PubMed  Google Scholar 

  25. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT–a major therapeutic target. Biochim Biophys Acta. 2004;1697:3–16.

    Article  CAS  PubMed  Google Scholar 

  26. Latronico MV, Costinean S, Lavitrano ML, Peschle C, Condorelli G. Regulation of cell size and contractile function by AKT in cardiomyocytes. Ann N Y Acad Sci. 2004;1015:250–60.

    Article  CAS  PubMed  Google Scholar 

  27. Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23:1515–27.

    Article  CAS  PubMed  Google Scholar 

  28. DeBosch B, Sambandam N, Weinheimer C, Courtois M, Muslin AJ. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem. 2006;281:32841–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fernández-Hernando C, Ackah E, Yu J, Suárez Y, Murata T, Iwakiri Y, Prendergast J, Miao RQ, Birnbaum MJ, Sessa WC. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab. 2007;6:446–57.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Matsui T, Rosenzweig A. Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI3-kinase and Akt. J Mol Cell Cardiol. 2005;38:63–71.

    Article  CAS  PubMed  Google Scholar 

  31. Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P. Protein kinases and phosphatases in the control of cell fate. Enzyme Res. 2011;2011:329098.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–27.

    Article  CAS  PubMed  Google Scholar 

  33. Théberge JF, Mehdi MZ, Pandey SK, Srivastava AK. Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor. Arch Biochem Biophys. 2003;420:9–17.

    Article  PubMed  Google Scholar 

  34. Pulakat L, Demarco VG, Whaley-Connell A, Sowers JR. The impact of overnutrition on insulin metabolic signaling in the heart and the kidney. Cardiorenal Med. 2011;1:102–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tong H, Rockman HA, Koch WJ, Steenbergen C, Murphy E. G protein-coupled receptor internalization signaling is required for cardioprotection in ischemic preconditioning. Circ Res. 2004;94:1133–41.

    Article  CAS  PubMed  Google Scholar 

  36. Vigneron F, Dos Santos P, Lemoine S, Bonnet M, Tariosse L, Couffinhal T, Duplaà C, Jaspard-Vinassa B. GSK-3β at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res. 2011;90:49–56.

    Article  CAS  PubMed  Google Scholar 

  37. Siddall HK, Warrell CE, Yellon DM, Mocanu MM. Ischemia-reperfusion injury and cardioprotection: investigating PTEN, the phosphatase that negatively regulates PI3K, using a congenital model of PTEN haploinsufficiency. Basic Res Cardiol. 2008;103:560–8.

    Article  CAS  PubMed  Google Scholar 

  38. Warfel NA, Niederst M, Stevens MW, Brennan PM, Frame MC, Newton AC. Mislocalization of the E3 ligase, β-transducin repeat-containing protein 1 (β-TrCP1), in glioblastoma uncouples negative feedback between the pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt. J Biol Chem. 2011;286:19777–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Krolikowski JG, Weihrauch D, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS. Role of Erk1/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo. Can J Anaesth. 2006;53:174–82.

    Article  PubMed  Google Scholar 

  40. Sun Z, Tong G, Ma N, Li J, Li X, Li S, Zhou J, Xiong L, Cao F, Yao L, Wang H, Shen L. NDRG2: a newly identified mediator of insulin cardioprotection against myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2013;108:341.

    Article  PubMed  Google Scholar 

  41. Ji L, Fu F, Zhang L, Liu W, Cai X, Zhang L, Zheng Q, Zhang H, Gao F. Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress. Am J Physiol Endocrinol Metab. 2010;298:E871–80.

    Article  CAS  PubMed  Google Scholar 

  42. Teshima Y, Takahashi N, Thuc LC, Nishio S, Nagano-Torigoe Y, Miyazaki H, Ezaki K, Yufu K, Hara M, Nakagawa M, Saikawa T. High-glucose condition reduces cardioprotective effects of insulin against mechanical stress-induced cell injury. Life Sci. 2010;87:154–61.

    Article  CAS  PubMed  Google Scholar 

  43. Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, Goldblatt CS, Meyer CJ, Li X, Cai L, Cui T. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 2011;60:625–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T. Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2012;303:H75–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Fuglesteg BN, Tiron C, Jonassen AK, Mjøs OD, Ytrehus K. Pretreatment with insulin before ischaemia reduces infarct size in Langendorff-perfused rat hearts. Acta Physiol (Oxf). 2009;195:273–82.

    Article  CAS  Google Scholar 

  46. Troncoso R, Vicencio JM, Parra V, Nemchenko A, Kawashima Y, Del Campo A, Toro B, Battiprolu PK, Aranguiz P, Chiong M, Yakar S, Gillette TG, Hill JA, Abel ED, Leroith D, Lavandero S. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res. 2012;93:320–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Liao LZ, Chen YL, Lu LH, Zhao YH, Guo HL, Wu WK. Polysaccharide from Fuzi likely protects against starvation-induced cytotoxicity in H9c2 cells by increasing autophagy through activation of the AMPK/mTOR pathway. Am J Chin Med. 2013;41:353–67.

    Article  CAS  PubMed  Google Scholar 

  48. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science. 2011;334:678–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ Res. 2011;109:502–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhang Y, Xu X, Ren J. MTOR overactivation and interrupted autophagy flux in obese hearts: a dicey assembly? Autophagy. 2013;9:939–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Shen WH, Chen Z, Shi S, Chen H, Zhu W, Penner A, Bu G, Li W, Boyle DW, Rubart M, Field LJ, Abraham R, Liechty EA, Shou W. Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J Biol Chem. 2008;283:13842–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001;294:1942–5.

    Article  CAS  PubMed  Google Scholar 

  53. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, Popescu LM, Das DK. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res. 2010;86:103–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37:19–24.

    Article  CAS  PubMed  Google Scholar 

  55. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–80.

    Article  CAS  PubMed  Google Scholar 

  56. Mohan ML, Jha BK, Gupta MK, Vasudevan NT, Martelli EE, Mosinski JD. Naga Prasad SV. Phosphoinositide 3-kinase γ inhibits cardiac GSK-3 independently of Akt. Sci Signal. 2013;6:ra4.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Shioda N, Han F, Moriguchi S, Fukunaga K. Constitutively active calcineurin mediates delayed neuronal death through Fas-ligand expression via activation of NFAT and FKHR transcriptional activities in mouse brain ischemia. J Neurochem. 2007;102:1506–17.

    Article  CAS  PubMed  Google Scholar 

  58. Papanicolaou KN, Izumiya Y, Walsh K. Forkhead transcription factors and cardiovascular biology. Circ Res. 2008;102:16–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Shioda N, Ishigami T, Han F, Moriguchi S, Shibuya M, Iwabuchi Y, Fukunaga K. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience. 2007;148:221–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD, Kuro-O M, Rothermel BA, Hill JA. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci USA. 2007;104:20517–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Cui XB, Wang C, Li L, Fan D, Zhou Y, Wu D, Cui QH, Fu FY, Wu LL. Insulin decreases myocardial adiponectin receptor 1 expression via PI3 K/Akt and FoxO1 pathway. Cardiovasc Res. 2012;93:69–78.

    Article  CAS  PubMed  Google Scholar 

  62. Niizuma S, Inuzuka Y, Okuda J, Kato T, Kawashima T, Tamaki Y, Iwanaga Y, Yoshida Y, Kosugi R, Watanabe-Maeda K, Machida Y, Tsuji S, Aburatani H, Izumi T, Kita T, Kimura T, Shioi T. Effect of persistent activation of phosphoinositide 3-kinase on heart. Life Sci. 2012;90:619–28.

    Article  CAS  PubMed  Google Scholar 

  63. Wu CH, Liu JY, Wu JP, Hsieh YH, Liu CJ, Hwang JM, Lee SD, Chen LM, Chang MH, Kuo WW, Shyu JC, Tsai JH, Huang CY. 17beta-estradiol reduces cardiac hypertrophy mediated through the up-regulation of PI3K/Akt and the suppression of calcineurin/NF-AT3 signaling pathways in rats. Life Sci. 2005;78:347–56.

    Article  CAS  PubMed  Google Scholar 

  64. van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67:21–9.

    Article  PubMed  Google Scholar 

  65. Kozma SC, Thomas G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays. 2002;24:65–71.

    Article  CAS  PubMed  Google Scholar 

  66. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  CAS  PubMed  Google Scholar 

  67. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA. 2001;98:9666–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Lv GF, Dong ML, Hu DH, Zhang WF, Wang YC, Tang CW, Zhu XX. Insulin-mediated inhibition of p38 mitogen-activated protein kinase protects cardiomyocytes in severe burns. J Burn Care Res. 2011;32:591–9.

    Article  PubMed  Google Scholar 

  69. Kuo WW, Chung LC, Liu CT, Wu SP, Kuo CH, Tsai FJ, Tsai CH, Lu MC, Huang CY, Lee SD. Effects of insulin replacement on cardiac apoptotic and survival pathways in streptozotocin-induced diabetic rats. Cell Biochem Funct. 2009;27:479–87.

    Article  CAS  PubMed  Google Scholar 

  70. Krüger M, Babicz K, von Frieling-Salewsky M, Linke WA. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J Mol Cell Cardiol. 2010;48:910–6.

    Article  PubMed  Google Scholar 

  71. Morisco C, Marrone C, Trimarco V, Crispo S, Monti MG, Sadoshima J, Trimarco B. Insulin resistance affects the cytoprotective effect of insulin in cardiomyocytes through an impairment of MAPK phosphatase-1 expression. Cardiovasc Res. 2007;76:453–64.

    Article  CAS  PubMed  Google Scholar 

  72. Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology. 2011;114:1364–72.

    Article  CAS  PubMed  Google Scholar 

  73. Chiang HT, Cheng WH, Lu PJ, Huang HN, Lo WC, Tseng YC, Wang JL, Hsiao M, Tseng CJ. Neuronal nitric oxide synthase activation is involved in insulin-mediated cardiovascular effects in the nucleus tractus solitarii of rats. Neuroscience. 2009;159:727–34.

    Article  CAS  PubMed  Google Scholar 

  74. Podgorska M, Kocbuch K, Grden M, Szulc A, Szutowicz A, Pawelczyk T. Different signaling pathways utilized by insulin to regulate the expression of ENT2, CNT1, CNT2 nucleoside transporters in rat cardiac fibroblasts. Arch Biochem Biophys. 2007;464(2):344–9.

    Article  CAS  PubMed  Google Scholar 

  75. He Z, Opland DM, Way KJ, Ueki K, Bodyak N, Kang PM, Izumo S, Kulkarni RN, Wang B, Liao R, Kahn CR, King GL. Regulation of vascular endothelial growth factor expression and vascularization in the myocardium by insulin receptor and PI3K/Akt pathways in insulin resistance and ischemia. Arterioscler Thromb Vasc Biol. 2006;26:787–93.

    Article  CAS  PubMed  Google Scholar 

  76. Fullmer TM, Pei S, Zhu Y, Sloan C, Manzanares R, Henrie B, Pires KM, Cox JE, Abel ED, Boudina S. Insulin suppresses ischemic preconditioning-mediated cardioprotection through Akt-dependent mechanisms. J Mol Cell Cardiol. 2013;64:20–9.

    Article  CAS  PubMed  Google Scholar 

  77. Damilano F, Perino A, Hirsch E. PI3K kinase and scaffold functions in heart. Ann N Y Acad Sci. 2010;1188:39–45.

    Article  CAS  PubMed  Google Scholar 

  78. Xu TJ, Liu Y, Yuan B. Effect of insulin in combination with selenium on Irs/PI3K-mediated GLUT4 expression in cardiac muscle of diabetic rats. Eur Rev Med Pharmacol Sci. 2011;15:1452–60.

    PubMed  Google Scholar 

  79. Zaha V, Francischetti I, Doenst T. Insulin improves postischemic recovery of function through PI3K in isolated working rat heart. Mol Cell Biochem. 2003;247:229–32.

    Article  CAS  PubMed  Google Scholar 

  80. Chen T, Ding G, Jin Z, Wagner MB, Yuan Z. Insulin ameliorates miR-1-induced injury in H9c2 cells under oxidative stress via Akt activation. Mol Cell Biochem. 2012;369:167–74.

    Article  CAS  PubMed  Google Scholar 

  81. Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol. 2008;214:316–21.

    Article  CAS  PubMed  Google Scholar 

  82. Yu W, Chen C, Fu Y, Wang X, Wang W. Insulin signaling: a possible pathogenesis of cardiac hypertrophy. Cardiovasc Ther. 2010;28:101–5.

    Article  CAS  PubMed  Google Scholar 

  83. Pulakat L, Aroor AR, Gul R, Sowers JR. Cardiac insulin resistance and microRNA modulators. Exp Diabetes Res. 2012;2012:654904.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Zhu Y, Pereira RO, O’Neill BT, Riehle C, Ilkun O, Wende AR, Rawlings TA, Zhang YC, Zhang Q, Klip A, Shiojima I, Walsh K, Abel ED. Cardiac PI3K-Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation. Mol Endocrinol. 2013;27:172–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Ginion A, Auquier J, Benton CR, Mouton C, Vanoverschelde JL, Hue L, Horman S, Beauloye C, Bertrand L. Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am J Physiol Heart Circ Physiol. 2011;301:H469–77.

    Article  CAS  PubMed  Google Scholar 

  86. Beale EG. Insulin signaling and insulin resistance. J Investig Med. 2013;61:11–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Glynn EL, Lujan HL, Kramer VJ, Drummond MJ, DiCarlo SE, Rasmussen BB. A chronic increase in physical activity inhibits fed-state mTOR/S6K1 signaling and reduces IRS-1 serine phosphorylation in rat skeletal muscle. Appl Physiol Nutr Metab. 2008;33:93–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Mellor KM, Reichelt ME, Delbridge LM. Autophagic predisposition in the insulin resistant diabetic heart. Life Sci. 2013;92:616–20.

    Article  CAS  PubMed  Google Scholar 

  89. Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin. 2012;8:609–17.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Abel ED, O’Shea KM, Ramasamy R. Insulin resistance: metabolic mechanisms and consequences in the heart. Arterioscler Thromb Vasc Biol. 2012;32:2068–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Shile Huang (Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, USA) for having the manuscript edited. This work was supported by grants from the Natural Science Foundation of Shandong Province (No. ZR2013HM084) and the Independent Innovation Foundation of Shandong University (No. 2012ZD043) of the People’s Republic of China.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Han, X. & Han, X. The Cardioprotection of the Insulin-Mediated PI3K/Akt/mTOR Signaling Pathway. Am J Cardiovasc Drugs 14, 433–442 (2014). https://doi.org/10.1007/s40256-014-0089-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-014-0089-9

Keywords

Navigation