Skip to main content
Log in

Epigenetic regulation of neuronal immediate early genes is associated with decline in their expression and memory consolidation in scopolamine-induced amnesic mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 24 July 2019

This article has been updated

Abstract

Recently, we reported a correlation of scopolamine mediated decline in memory consolidation with increase in the expression of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in the mouse hippocampus. Memory consolidation is a protein synthesis-dependent process which involves the expression of synaptic plasticity genes, particularly neuronal immediate early genes (IEGs). However, the mechanism of regulation of these genes during decline in memory is poorly understood. Therefore, we have studied the epigenetic regulation of expression of neuronal IEGs in scopolamine-induced amnesic mice. Scopolamine significantly impaired memory consolidation as tested by radial arm maze, and the expression of neuronal IEGs was downregulated in the hippocampus as revealed by qRT-PCR and Western blotting. Further, methylated DNA immunoprecipitation (MeDIP) analysis showed increase in DNA methylation, while chromatin immunoprecipitation (ChIP) revealed decrease in H3K9/14 acetylation at the promoter of neuronal IEGs. Taken together, the present study shows that increased DNA methylation and decreased histone acetylation at the promoter of neuronal IEGs are associated with decline in their expression and memory consolidation during scopolamine-induced amnesia. These findings suggest that the epigenetic regulation through altered DNA methylation and histone acetylation might be explored further to develop potential therapeutic interventions for amnesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Change history

  • 24 July 2019

    The original article inadvertently had a mistake in Fig.��3a and b. The authors regret to these errors.

  • 24 July 2019

    The original article inadvertently had a mistake in Fig.��3a and b. The authors regret to these errors.

References

  1. Liu L, Groen TV, Kadish I, Tollefsbol TO (2009) DNA methylation impacts on learning and memory in aging. Neurobiol aging 30:549–560

    Article  CAS  PubMed  Google Scholar 

  2. Moore LD, Le T, Fan G (2012) DNA methylation and its basic function. Neuropsychopharmacology Rev 38:23–38

    Article  Google Scholar 

  3. Lu H, Liu X, Deng Y, Qing H (2013) DNA methylation, a hand behind neurodegenerative diseases. Front aging neurosci. doi:10.3389/fnagi.2013.00085

    Google Scholar 

  4. Penner MR, Roth TL, Chawla MK, Hoanga LT, Roth ED, Lubin FD, Sweatt JD, Worley PF, et al. (2011) Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiol Aging 32:2198–2210

    Article  CAS  PubMed  Google Scholar 

  5. Orphanides G, Reinberg D (2002) A unified theory of gene expression. Cell 108:439–451

    Article  CAS  PubMed  Google Scholar 

  6. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJF, Zhou Y, et al. (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM (2013) Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 33:6401–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abel T, Lattal KM (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 11:180–187

    Article  CAS  PubMed  Google Scholar 

  9. Davis S, Bozon B, Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142:17–30

    Article  CAS  PubMed  Google Scholar 

  10. Miyashita T, Kubik S, Lewandowski G, Guzowski JF (2008) Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol Learn Mem 89:269–284

    Article  CAS  PubMed  Google Scholar 

  11. Minatohara K, Akiyoshi M, Okuno H (2016) Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. doi:10.3389/fnmol.2015.00078

    PubMed  PubMed Central  Google Scholar 

  12. Guzowski JF (2002) Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12:86–104

    Article  CAS  PubMed  Google Scholar 

  13. Loebrich S, Nedivi E (2009) The function of activity-regulated genes in the nervous system. Physiol Rev 89:1079–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones MW, Errington ML, French PJ, Fine A, Bliss TVP, Garel S, Charnay P, Bozon B, et al. (2001) A requirement for the immediate early gene zif268 in the expression of late LTP and long-term memories. Nature Neurosci 4:289–296

    Article  CAS  PubMed  Google Scholar 

  15. Tzingounis A, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52:403–407

    Article  CAS  PubMed  Google Scholar 

  16. Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28:11760–11767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reti IM, Reddy R, Worley PF, Baraban JM (2002) Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J Neurochem 82:1561–1565

    Article  CAS  PubMed  Google Scholar 

  18. Johnson AW, Crombag HS, Takamiya K, Baraban JM, Holland PC, Huganir RL, Reti IM (2007) A selective role for neuronal activity regulated pentraxin in the processing of sensory-specific incentive value. J Neurosci 27:13430–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brouillette J, Young D, During MJ, Quirion R (2007) Hippocampal gene expression profiling reveals the possible involvement of Homer1 and GABAB receptors in scopolamine-induced amnesia. J Neurochem 102:1978–1989

    Article  CAS  PubMed  Google Scholar 

  20. Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PloS One. doi:10.1371/journal.pone.0027265

    Google Scholar 

  21. Gautam A, Wadhwa R, Thakur MK (2013) Involvement of hippocampal Arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiol Learn Mem 106:177–184

    Article  PubMed  Google Scholar 

  22. Singh P, Konar A, Kumar A, Srivas S, Thakur MK (2015) Hippocampal chromatin modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment. J Neurochem 134:642–651

    Article  CAS  PubMed  Google Scholar 

  23. Valladolid-Acebes I, Stucchi P, Cano V, Fernandez-Alfonso MS, Merino B, Gil-Ortega M, Fole A, Morales L, et al. (2011) High-fat diets impair spatial learning in the radial-arm maze in mice. Neurobiol learn mem 95:80–85

    Article  CAS  PubMed  Google Scholar 

  24. Nikbakht N, Zarei B, Shirani E, Moshtaghian J, Esmaeili A, Habibian S (2012) Experience-dependent expression of rat hippocampal Arc and Homer1a after spatial learning on 8-arm and 12-arm radial mazes. Neuroscience 218:49–55

    Article  CAS  PubMed  Google Scholar 

  25. Ziolkowska B, Urbanski MJ, Wawrzczak-Bargiela A, Bilecki W, Przewlocki R (2005) Morphine activates Arc expression in the mouse striatum and in mouse neuroblastoma Neuro2A MOR1A cells expressing mu-opioid receptors. J Neurosci Res 82:563–570

    Article  CAS  PubMed  Google Scholar 

  26. Kidambi S, Yarmush J, Berdichevsky Y, Kamath S, Fong W, SchianodiCola J (2010) Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Res Notes 3:201

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mahan AL, Mou L, Shah N, Hu JH, Worley PF, Ressler KJ (2012) Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning. J Neurosci 32:4651–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Konar A, Thakur MK (2015) Neuropsin expression correlates with dendritic marker MAP2c level in different brain regions of aging mice. Mol Neurobiol 51:1130–1138

    Article  CAS  PubMed  Google Scholar 

  29. Watts J, Stevens R, Robinson C (1981) Effects of scopolamine on radial maze performance in rats. Physiol Behav 26:845–851

    Article  CAS  PubMed  Google Scholar 

  30. Zhang HT, O’Donnell JM (2000) Effects of rolipram on scopolamine-induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology 150:311–316

    Article  CAS  PubMed  Google Scholar 

  31. Rai R, Singh HK, Prasad S (2015a) special extract of bacopa monnieri (cdri-08) restores learning and memory by upregulating expression of the NMDA receptor subunit GluN2B in the brain of scopolamine-induced amnesic mice. Evid Based Complement Alternat Med 2015:254303. doi:10.1155/2015/254303

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 7:217–227

    Article  CAS  PubMed  Google Scholar 

  33. Glick SD, Zimmerberg B (1972) Amnesic effects of scopolamine. Behav Biol 7:245–254

    Article  CAS  PubMed  Google Scholar 

  34. Ghoneim MM, Mewaldt SP (1975) Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory. Psychopharmacologia 44:257–226

    Article  CAS  PubMed  Google Scholar 

  35. Izquierdo I (1989) Mechanism of action of scopolamine as an amnestic. Trends Pharmacol Sci 10:175–177

    Article  CAS  PubMed  Google Scholar 

  36. Wallenstein GV, Vago DR (2001) Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiol Learn Mem 75:245–252

    Article  CAS  PubMed  Google Scholar 

  37. Rutten K, Prickaerts J, Blokland A (2006) Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action. Neurobiol Learn Mem 85:132–138

    Article  CAS  PubMed  Google Scholar 

  38. Han CK, Park YH, Jin DQ, Hwang YK, Oh KB, Han JS (2007) SK-PC-B70M from Pulsatilla koreana improves scopolamine-induced impairments of memory consolidation and spatial working memory. Brain Res 1184:254–259

    Article  CAS  PubMed  Google Scholar 

  39. Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34:1307–1350

    Article  CAS  PubMed  Google Scholar 

  40. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  41. Tata AM, Velluto L, D'Angelo C, Reale M (2014) Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol Disord Drug Targets 13:1294–1303

    Article  CAS  PubMed  Google Scholar 

  42. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985

    Article  CAS  PubMed  Google Scholar 

  43. Oler JA, Markur EJ (1998) Age-related deficits on the radial maze and in fear conditioning: hippocampal processing and consolidation. Hippocampus 8:402–415

    Article  CAS  PubMed  Google Scholar 

  44. Shukitt-Hale B, McEwen JJ, Szprengiel A, Joseph JA (2004) Effect of age on the radial arm water maze—a test of spatial learning and memory. Neurobiol aging 25:223–229

    Article  PubMed  Google Scholar 

  45. Borlikova GG, Trejo M, Mably AJ, Mc Donald JM, SalaFrigerio C, Regan CM, Murphy KJ, Masliah E, et al. (2013) Alzheimer brain-derived amyloid β-protein impairs synaptic remodeling and memory consolidation. Neurobiol Aging 34:1315–1327

    Article  CAS  PubMed  Google Scholar 

  46. Singh P, Thakur MK (2014) Reduced recognition memory is correlated with decrease in DNA methyltransferase1 and increase in histone deacetylase2 protein expression in old male mice. Biogerontology 15:339–346

    Article  CAS  PubMed  Google Scholar 

  47. Kumari A, Thakur MK (2014) Age-dependent decline of nogo—a protein in the mouse cerebrum. Cell Mol Neurobiol 34:1131–1141

    Article  CAS  PubMed  Google Scholar 

  48. Kumar D, Thakur MK (2014) Age-related expression of Neurexin1 and Neuroligin3 is correlated with presynaptic density in the cerebral cortex and hippocampus of male mice. Age 37:17

    Article  Google Scholar 

  49. Konar A, Gautam A, Thakur MK (2015) Bacopa monniera (cdri-08) upregulates the expression of neuronal and glial plasticity markers in the brain of scopolamine induced amnesic mice. Evid Based Complement Alternat Med 2015:837012. doi:10.1155/2015/837012

    Article  PubMed  PubMed Central  Google Scholar 

  50. Konar A, Singh P, Thakur MK (2015) Age-associated cognitive decline: insights into molecular switches and recovery avenues. Aging Dis. doi:10.14336/AD.2015.1004

    Google Scholar 

  51. Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69:175–186

    Article  CAS  PubMed  Google Scholar 

  52. Korb E, Finkbeiner S (2011) Arc in synaptic plasticity: from gene to behavior. Cell 34:11

    Google Scholar 

  53. Palop JJ, Chin J, Bien-Ly N, Massaro C, Yeung BZ, Yu GQ, Mucke L (2005) Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice. J Neurosci 25:9686–9693

    Article  CAS  PubMed  Google Scholar 

  54. Gautam A, Kaul SC, Thakur MK (2015) Alcoholic extract of Ashwagandha leaves protects against amnesia by regulation of Arc function. Mol Neurobiol. doi:10.1007/s12035-015-9117-2

    PubMed  Google Scholar 

  55. Maddox SA, Monsey MS, Schafe GE (2011) Early growth response gene 1 (Egr-1) is required for new and reactivated fear memories in the lateral amygdale. Learn Mem 18:24–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003) MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Phil Trans Royal Soc Lon 358:805–814

    Article  CAS  Google Scholar 

  57. Hall J, Thomas KL, Everitt BJ (2001) Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J Neurosci 21:2186–2193

    CAS  PubMed  Google Scholar 

  58. Lee JLC, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843

    Article  CAS  PubMed  Google Scholar 

  59. Koldamova R, Schug J, Lefterova M, Cronican AA, Fitz NF, Davenport FA, Carter A, Castranio EL, et al. (2014) Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration. Neurobiol Dis 63:107–114

    Article  CAS  PubMed  Google Scholar 

  60. Desjardins S, Mayo W, Vallee M, Hancock D, Moal ML, Simon H, Abrous DN (1997) Effect of aging on the basal expression of c-Fos, c-Jun, and Egr-1 proteins in the hippocampus. Neurobiol Aging 18:37–44

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Wang ZH, Wu YY, Tang H, Tan L, Wang X, Gao XY, Xiong YS, et al. (2013) Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol Neurobiol 47:373–381

    Article  CAS  PubMed  Google Scholar 

  62. Brakeman PR, Lanahan AA, O'brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288

    Article  CAS  PubMed  Google Scholar 

  63. Luo P, Li X, Fei Z, Poon W (2012) Scaffold protein Homer 1: implications for neurological diseases. Neurochem Int 61:731–738

    Article  CAS  PubMed  Google Scholar 

  64. Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwartz MK, Seeberg PJ, Worley PF, et al. (2005) Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Genes Brain Behav 4:273–288

    Article  CAS  PubMed  Google Scholar 

  65. Wagner KV, Hartmann J, Mangold K, Wang XD, Labermaier C, Liebl C, Wolf M, Gassen NC, et al. (2013) Homer1 mediates acute stress-induced cognitive deficits in the dorsal hippocampus. J Neurosci 33:3857–3864

    Article  CAS  PubMed  Google Scholar 

  66. O'Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P (1991) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–323

    Article  Google Scholar 

  67. Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23:3807–3819

    CAS  PubMed  Google Scholar 

  68. Levenson JM, Sweatt JD (2006) Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci 63:1009–1016

    Article  CAS  PubMed  Google Scholar 

  69. Lahiri DK, Maloney B, Zawia NH (2009) The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 14:992–1003

    Article  CAS  PubMed  Google Scholar 

  70. Irvine RA, Lin IG, Hsieh CL (2002) DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol 22:6689–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roth TL, Sweatt JD (2009) Regulation of chromatin structure in memory formation. Curr Opin Neurobiol 19:336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Levenson JM, Roth T, Lubin FD, Miller CA, Huang IC, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (Cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281:15763–15773

    Article  CAS  PubMed  Google Scholar 

  73. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  CAS  PubMed  Google Scholar 

  74. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Day JJ, Sweatt JD (2011) Epigenetic modifications in neurons are essential for formation and storage of behavioral memory. Neuropsychopharmacology 36:357–358

    Article  PubMed  Google Scholar 

  76. Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A, Kawamura Y, Hibino H, et al. (2013) DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res 77:208–214

    Article  CAS  PubMed  Google Scholar 

  77. Robertson KD (2002) DNA methylation and chromatin—unraveling the tangled web. Oncogene 21:5361–5379

    Article  CAS  PubMed  Google Scholar 

  78. Irvine RA, Lin IG, Hsieh CL (2002) DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol 22:6689–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22:836–845

    Article  CAS  PubMed  Google Scholar 

  80. Federman N, Fustinana MS, Romano A (2009) Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learn Mem 16:600–606

    Article  PubMed  Google Scholar 

  81. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, et al. (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  CAS  PubMed  Google Scholar 

  82. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodeling. Nature 447:178–182

    Article  CAS  PubMed  Google Scholar 

  83. Bousiges O, Vasconcelos AP, Neidl R, Cosquer B, Herbeaux K, Panteleeva I, Loeffler JP, Cassel JC, et al. (2010) Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology 35:2521–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W (2012) Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics 12:1261–1268

    Article  CAS  PubMed  Google Scholar 

  85. Hendrickx A, Pierrot N, Tasiaux B, Schakman O, Kienlen-Campard P, Smet CD, Octave JN (2014) Expression regulation of immediate early genes expression involved in memory formation by the amyloid precursor protein of Alzheimer disease. Plos One. 9:e99467

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology, Ministry of Science and Technology (BT/PR3996/MED/97/57/2011), Government of India. We also acknowledge the University Grants Commission, India, for senior research fellowship to S.S. and DBT-BHU Interdisciplinary School of Life Sciences, Banaras Hindu University, for the use of real-time PCR, cryotome, and confocal microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra K. Thakur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure 1.

Diagrammatic representation of promoter regions of Arc, Egr1, Homer1 and Narp amplified by qPCR. The green region represents the promoter region amplified for MeDIP and ChIP qPCR assay. (TSS- Transcription start site). (GIF 1176 kb)

High Resolution Image (TIFF 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivas, S., Thakur, M.K. Epigenetic regulation of neuronal immediate early genes is associated with decline in their expression and memory consolidation in scopolamine-induced amnesic mice. Mol Neurobiol 54, 5107–5119 (2017). https://doi.org/10.1007/s12035-016-0047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0047-4

Keywords

Navigation