Skip to main content

Advertisement

Log in

NMR-Based Metabolomics Reveal a Recovery from Metabolic Changes in the Striatum of 6-OHDA-Induced Rats Treated with Basic Fibroblast Growth Factor

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Basic fibroblast growth factor (bFGF) has a potential role in the treatment of Parkinson’s disease (PD) due to its neurotrophic effect on dopaminergic neurons. To address the metabolic mechanisms of bFGF administration on PD, we have analyzed the metabolic profiles in the striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats after the treatment with bFGF using 1H NMR spectroscopy and partial least squares-discriminant analysis (PLS-DA). In the present study, we found that bFGF treatment can effectively recover PD-induced loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. Metabolomic analyses reveal that PLS-DA failed to discriminate between the control and bFGF groups, indicating that the metabolic difference between these two groups was negligible. However, reliable PLS-DA models can be developed between control and PD groups as well as between PD and bFGF groups, which is attributed to changes in a series of metabolites including GABA, glutamate (Glu), glutamine (Gln), lactate, N-acetylaspartate, creatine, taurine, and myo-inositol. ANOVA results show that the levels of all these metabolites were significantly increased in PD rats relative to normal rats, while PD-induced increase can be significantly reduced to normal levels after bFGF administration. In conclusion, our results suggest that a recovery from PD-induced metabolic disorders may be achieved by bFGF treatment, involving Gln/Glu-GABA cycle, energy metabolism, osmoregulation, and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

Ala:

Alanine

bFGF:

Basic fibroblast growth factor

Cho:

Choline

CNS:

Central nervous system

Cre:

Creatine

Eth:

Ethanol

GABA:

γ-Aminobutyric acid

Gln:

Glutamine

Glu:

Glutamate

Lac:

Lactate

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Myo:

Myo-inositol

NAA:

N-acetyl aspartate

PD:

Parkinson’s disease

PLS-DA:

Partial least squares-discriminant analysis

Suc:

Succinate

Tau:

Taurine

TH:

Tyrosine hydroxylase

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  2. Hornykiewicz O (2006) The discovery of dopamine deficiency in the parkinsonian brain. J Neural Transm 70:9–15

    Article  CAS  Google Scholar 

  3. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  4. Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53(S3):S16–S25

    Article  CAS  PubMed  Google Scholar 

  5. Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic Parkinsonism. Neurobiol Dis 51:35–42

    Article  CAS  PubMed  Google Scholar 

  6. Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22(1):11–17

    Article  PubMed  PubMed Central  Google Scholar 

  7. More SV, Kumar H, Kim IS, Song SY, Choi DK (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediat Inflamm Article ID: 952375. doi: 10.1155/2013/952375

  8. Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O’Donnell KC, Barnhill L, Casida JE et al (2013) Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci USA 110(2):636–641

    Article  CAS  PubMed  Google Scholar 

  9. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    Article  CAS  PubMed  Google Scholar 

  10. Butcher J (2005) Parkin gene therapy could treat Parkinson’s disease. Lancet Neurol 4(2):82

    Article  PubMed  Google Scholar 

  11. Lindvall O, Björklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1(4):382–393

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferreira JJ, Katzenschlager R, Bloem BR, Bonuccelli U, Burn D, Deuschl G, Dietrichs E, Fabbrini G et al (2013) Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol 20(1):5–15

    Article  CAS  PubMed  Google Scholar 

  13. Deuschl G, Agid Y (2013) Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: balancing the risks and benefits. Lancet Neurol 12(10):1025–1034

    Article  PubMed  Google Scholar 

  14. Mena MA, Casarejos MJ, Gimenez-Gallego G, de Yebenes JG (1995) Fibroblast growth factors: structure-activity on dopamine neurons in vitro. J Neural Transm-Parkinson’s Dis Dementia Sect 9(1):1–14

    Article  CAS  Google Scholar 

  15. Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC, Studer L, Isacson O (2008) Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson’s disease. Brain 131(8):2127–2139

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ratzka A, Baron O, Stachowiak MK, Grothe C (2012) Fibroblast growth factor 2 regulates dopaminergic neuron development in vivo. J Neurochem 122:94–105

    Article  CAS  PubMed  Google Scholar 

  17. Peng J, Xie L, Jin K, Greenberg DA, Andersen JK (2008) Fibroblast growth factor 2 enhances striatal and nigral neurogenesis in the acute 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson’s disease. Neurosci 153(3):664–670

    Article  CAS  Google Scholar 

  18. Timmer M, Cesnulevicius K, Winkler C, Kolb J, Lipokatic-Takacs E, Jungnickel J, Grothe C (2007) Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci 27(3):459–471

    Article  CAS  PubMed  Google Scholar 

  19. Shults CW, Ray J, Tsuboi K, Gage FH (2000) Fibroblast growth factor-2-producing fibroblasts protect the nigrostriatal dopaminergic system from 6-hydroxydopamine. Brain Res 883(2):192–204

    Article  CAS  PubMed  Google Scholar 

  20. Michell AW, Mosedale D, Grainger DJ, Barker RA (2008) Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics 4(3):191–201

    Article  CAS  Google Scholar 

  21. LeWitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L (2013) 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord 28(12):1653–1660

    Article  CAS  PubMed  Google Scholar 

  22. Roede JR, Uppal K, Park Y, Lee K, Tran V, Walker D, Strobet FH, Rhodes SL et al (2013) Serum metabolomics of slow vs. rapid motor progression Parkinson’s disease: a pilot study. PloS One 8(10):e77629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J et al (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46(5):531–540

    Article  Google Scholar 

  24. Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N (2015) Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2014-309676

  25. Savorani F, Tomasi G, Engelsen SB (2010) icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Res 202(2):190–202

    Article  CAS  Google Scholar 

  26. Gao HC, Zhu H, Song CY, Lin L, Xiang Y, Yan ZH, Bai GH, Ye FQ et al (2013) Metabolic changes detected by ex vivo high resolution 1H NMR spectroscopy in the striatum of 6-OHDA-induced Parkinson’s rat. Mol Neurobiol 47(1):123–130

    Article  CAS  PubMed  Google Scholar 

  27. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, Djoumbou Y, Mandal R et al (2012) HMDB 3.0-the human metabolome database in 2013. Nucl Acids Res 41:D801–D807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schrag A, Jahanshahi M, Quinn N (2000) How does Parkinson’s disease affect quality of life? A comparison with quality of life in the general population. Mov Disord 15(6):1112–1118

    Article  CAS  PubMed  Google Scholar 

  29. Nakashima A, Hayashi N, Kaneko YS, Mori K, Sabban EL, Nagatsu T, Ota A (2009) Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines. J Neural Transm 116(11):1355–1362

    Article  CAS  PubMed  Google Scholar 

  30. Sidoryk-Wegrzynowicz M, Aschner M (2013) Manganese toxicity in the central nervous system: the glutamine/glutamate-γ-aminobutyric acid cycle. J Intern Med 273(5):466–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Podell M, Hadjiconstantinou M, Smith MA, Neff NH (2003) Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of Parkinsonism. Exp Neurol 179(2):159–166

    Article  CAS  PubMed  Google Scholar 

  32. Chassain C, Bielicki G, Keller C, Renou JP, Durif F (2010) Metabolic changes detected in vivo by 1H MRS in the MPTP intoxicated mouse. NMR Biomed 23:547–553

    Article  CAS  PubMed  Google Scholar 

  33. Emir UE, Tuite PJ, Oz G (2012) Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS One 7(1):e30918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coune PG, Craveiro M, Gaugler MN, Mlynarik V, Schneider BL, Aebischer P, Gruetter R (2013) An in vivo ultrahigh field 14.1 T (1) H-MRS study on 6-OHDA and alpha-synuclein-based rat models of Parkinson’s disease: GABA as an early disease marker. NMR Biomed 26:43–50

    Article  CAS  PubMed  Google Scholar 

  35. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  CAS  PubMed  Google Scholar 

  36. Koga K, Mori A, Ohashi S, Kurihara N, Kitagawa H, Ishikawa M, Misumoto Y, Nakai M (2006) 1H MRS identifies lactate rise in the striatum of MPTP-treated C57BL/6 mice. Eur J Neurosci 23(4):1077–1081

    Article  PubMed  Google Scholar 

  37. Lowe MT, Kim EH, Faull RL, Christie DL, Waldvogel HJ (2013) Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab 33(8):1295–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Isaacks RE, Bender AS, Kim CY, Prieto NM, Norenberg MD (1994) Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res 19(3):331–338

    Article  CAS  PubMed  Google Scholar 

  39. Strange K, Emma F, Paredes A, Morrison R (1994) Osmoregulatory changes in Myo-inositol content and Na+/Myo-inositol cotransport in rat cortical astrocytes. Glia 12(1):35–43

    Article  CAS  PubMed  Google Scholar 

  40. Bagga P, Chugani AN, Varadarajan KS, Patel AB (2013) In vivo NMR studies of regional cerebral energetics in MPTP model of Parkinson’s disease: recovery of cerebral metabolism with acute levodopa treatment. J Neurochem 127(3):365–377

    Article  CAS  PubMed  Google Scholar 

  41. Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28:941–953

    Article  CAS  PubMed  Google Scholar 

  42. Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, Rosen BR, Beal MF (2000) Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem 74:2108–2119

    Article  CAS  PubMed  Google Scholar 

  43. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, Marie C (2001) N-acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415

    Article  CAS  PubMed  Google Scholar 

  44. Tsai G, Coyle JT (1995) N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46(5):531–540

    Article  CAS  PubMed  Google Scholar 

  45. Davies SE, Gotoh M, Richards DA, Obrenovitch TP (1998) Hypoosmolarity induces an increase of extracellular N-acetylaspartate concentration in the rat striatum. Neurochem Res 23(8):1021–1025

    Article  CAS  PubMed  Google Scholar 

  46. Lei S, Powers R (2013) NMR metabolomics analysis of Parkinson’s disease. Curr Metabolomics 1(3):191–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos.: 21175099, 21575105, 81400863) and Zhejiang Provincial Natural Science Foundation (Nos.: LY13H070005, LY14H090014, LY15H180010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihan Yan or Hongchang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Zhao, L., Xia, H. et al. NMR-Based Metabolomics Reveal a Recovery from Metabolic Changes in the Striatum of 6-OHDA-Induced Rats Treated with Basic Fibroblast Growth Factor. Mol Neurobiol 53, 6690–6697 (2016). https://doi.org/10.1007/s12035-015-9579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9579-2

Keywords

Navigation