Skip to main content

Advertisement

Log in

Metabolic Changes Detected by Ex Vivo High Resolution 1H NMR Spectroscopy in the Striatum of 6-OHDA-Induced Parkinson’s Rat

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons; however, its crucial mechanism of the metabolic changes of neurotransmitters remains ambiguous. The pathological mechanism of PD might involve cerebral metabolism perturbations. In this study, ex vivo proton nuclear magnetic resonance (1H NMR) was used to determine the level changes of 13 metabolites in the bilateral striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats. The results showed that, in the right striatum of 6-OHDA-induced PD rats, increased levels of glutamate (Glu) and γ-aminobutyric acid (GABA) concomitantly with decreased level of glutamine (Gln) were observed compared to the control. Whereas, in the left striatum of 6-OHDA-induced PD rats, increased level of Glu with decreased level of GABA and unchanged Gln were observed. Other cerebral metabolites including lactate, alanine, creatine, succinate, taurine, and glycine were also found to have some perturbations. The observed metabolic changes for Glu, Gln, and GABA are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons. The altered Gln and GABA levels are most likely as a strategy to protect neurons from Glu excitotoxic injury after striatal dopamine depletion. Changes in energy metabolism and tricarboxylic acid cycle might be involved in the pathogenesis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

6-OHDA:

6-Hydroxydopamine

GABA:

γ-Aminobutyric acid

Glu:

Glutamate

Gln:

Glutamine

Lac:

Lactate

NAA:

N-acetyl aspartate

Ala:

Alanine

Suc:

Succinate

Asp:

Aspartate

Cr:

Creatine

Tau:

Taurine

m-Ins:

Myo-inositol

Cho:

Choline

Gly:

Glycine

CNS:

Central nervous system

References

  1. Pearl PL, Hartka TR, Taylor J (2006) Diagnosis and treatment of neurotransmitter disorders. Curr Treat Option NE 8(6):441–450

    Article  Google Scholar 

  2. Chassain C, Bielicki G, Durand E, Lolignier S, Essafi F, Traore A, Durif F (2008) Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson's disease, the MPTP-intoxicated mouse. J Neurochem 105(3):874–882

    Article  PubMed  CAS  Google Scholar 

  3. Schober A (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res 318(1):215–224

    Article  PubMed  Google Scholar 

  4. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 65(2):135–172

    Article  PubMed  CAS  Google Scholar 

  5. Luthman J, Fredriksson A, Sundstrom E, Jonsson G, Archer T (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 33(3):267–277

    Article  PubMed  CAS  Google Scholar 

  6. Chassain C, Bielicki G, Keller C, Renou JP, Durif F (2010) Metabolic changes detected in vivo by 1H MRS in the MPTP-intoxicated mouse. NMR Biomed 23(6):547–553

    Article  PubMed  CAS  Google Scholar 

  7. Chassain C, Bielicki G, Donnat JP, Renou JP, Eschalier A, Durif F (2005) Cerebral glutamate metabolism in Parkinson's disease: an in vivo dynamic 13C NMS study in the rat. Exp Neurol 191(2):276–284

    Article  PubMed  CAS  Google Scholar 

  8. Aguiar LM, Macedo DS, Vasconcelos SM, Oliveira AA, de Sousa FC, Viana GS (2008) CSC, an adenosine A(2A) receptor antagonist and MAO B inhibitor, reverses behavior, monoamine neurotransmission, and amino acid alterations in the 6-OHDA-lesioned rats. Brain Res 1191:192–199

    Article  PubMed  CAS  Google Scholar 

  9. Carta AR, Fenu S, Pala P, Tronci E, Morelli M (2003) Selective modifications in GAD67 mRNA levels in striatonigral and striatopallidal pathways correlate to dopamine agonist priming in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 18(9):2563–2572

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen KM, Soghomonian JJ (2004) Normalization of glutamate decarboxylase gene expression in the entopeduncular nucleus of rats with a unilateral 6-hydroxydopamine lesion correlates with increased GABAergic input following intermittent but not continuous levodopa. Neuroscience 123(1):31–42

    Article  PubMed  CAS  Google Scholar 

  11. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063

    PubMed  CAS  Google Scholar 

  12. Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Ugurbil K (2009) Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 29(3):441–463

    Article  PubMed  CAS  Google Scholar 

  13. Coen M, Lenz EM, Nicholson JK, Wilson ID, Pognan F, Lindon JC (2003) An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem Res Toxicol 16(3):295–303

    Article  PubMed  CAS  Google Scholar 

  14. Gao H, Dong B, Liu X, Xuan H, Huang Y, Lin D (2008) Metabonomic profiling of renal cell carcinoma: high-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Anal Chim Acta 624(2):269–277

    Article  PubMed  CAS  Google Scholar 

  15. Gao HC, Lu Q, Liu X, Cong H, Zhao LC, Wang HM, Lin DH (2009) Application of 1H NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Sci 100(4):782–785

    Article  PubMed  CAS  Google Scholar 

  16. Gao H, Xiang Y, Sun N, Zhu H, Wang Y, Liu M, Ma Y, Lei H (2007) Metabolic changes in rat prefrontal cortex and hippocampus induced by chronic morphine treatment studied ex vivo by high resolution 1H NMR spectroscopy. Neurochem Int 50(2):386–394

    Article  PubMed  CAS  Google Scholar 

  17. Deelchand DK, Nelson C, Shestov AA, Ugurbil K, Henry PG (2009) Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6-13C2]glucose and [1,2-13C2]acetate. J Magn Reson 196(2):157–163

    Article  PubMed  CAS  Google Scholar 

  18. Haberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18(11):1223–1232

    Article  PubMed  CAS  Google Scholar 

  19. Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1988) Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51(5):1455–1464

    Article  PubMed  CAS  Google Scholar 

  20. Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agro A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22(16):6900–6907

    PubMed  CAS  Google Scholar 

  21. Robertson RG, Graham WC, Sambrook MA, Crossman AR (1991) Further investigations into the pathophysiology of MPTP-induced parkinsonism in the primate: an intracerebral microdialysis study of gamma-aminobutyric acid in the lateral segment of the globus pallidus. Brain Res 563(1–2):278–280

    Article  PubMed  CAS  Google Scholar 

  22. Meshul CK, Allen C (2000) Haloperidol reverses the changes in striatal glutamatergic immunolabeling following a 6-OHDA lesion. Synapse 36(2):129–142, (New York, NY

    Article  PubMed  CAS  Google Scholar 

  23. Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 88(1):1–16

    Article  PubMed  CAS  Google Scholar 

  24. Matthews CC, Zielke HR, Wollack JB, Fishman PS (2000) Enzymatic degradation protects neurons from glutamate excitotoxicity. J Neurochem 75(3):1045–1052

    Article  PubMed  CAS  Google Scholar 

  25. Lewis LD, Ljunggren B, Norberg K, Siesjo BK (1974) Changes in carbohydrate substrates, amino acids and ammonia in the brain during insulin-induced hypoglycemia. J Neurochem 23(4):659–671

    Article  PubMed  CAS  Google Scholar 

  26. Tillakaratne NJ, Medina-Kauwe L, Gibson KM (1995) gamma-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol 112(2):247–263

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Liu H, Wu J, Liu M, Wang Y (2009) Metabonomic alterations in hippocampus, temporal and prefrontal cortex with age in rats. Neurochem Int 54(8):481–487

    Article  PubMed  Google Scholar 

  28. Cruz CJ, Aminoff MJ, Meyerhoff DJ, Graham SH, Weiner MW (1997) Proton MR spectroscopic imaging of the striatum in Parkinson's disease. Magn Reson Imaging 15(6):619–624

    Article  PubMed  CAS  Google Scholar 

  29. Davie CA, Wenning GK, Barker GJ, Tofts PS, Kendall BE, Quinn N, McDonald WI, Marsden CD, Miller DH (1995) Differentiation of multiple system atrophy from idiopathic Parkinson's disease using proton magnetic resonance spectroscopy. Ann Neurol 37(2):204–210

    Article  PubMed  CAS  Google Scholar 

  30. Choi CB, Kim SY, Lee SH, Jahng GH, Kim HY, Choe BY, Ryu KN, Yang DM, Yim SV, Choi WS (2011) Assessment of metabolic changes in the striatum of a MPTP-intoxicated canine model: in vivo 1H-MRS study of an animal model for Parkinson's disease. Magn Reson Imaging 29(1):32–39

    Article  PubMed  CAS  Google Scholar 

  31. Boska MD, Lewis TB, Destache CJ, Benner EJ, Nelson JA, Uberti M, Mosley RL, Gendelman HE (2005) Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson's disease. J Neurosci 25(7):1691–1700

    Article  PubMed  CAS  Google Scholar 

  32. Isaacks RE, Bender AS, Kim CY, Prieto NM, Norenberg MD (1994) Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res 19(3):331–338

    Article  PubMed  CAS  Google Scholar 

  33. Sartorius A, Lugenbiel P, Mahlstedt MM, Ende G, Schloss P, Vollmayr B (2008) Proton magnetic resonance spectroscopic creatine correlates with creatine transporter protein density in rat brain. J Neurosci Methods 172(2):215–219

    Article  PubMed  CAS  Google Scholar 

  34. Chih CP, Roberts EL Jr (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23(11):1263–1281

    Article  PubMed  CAS  Google Scholar 

  35. Shank RP, Aprison MH (1971) Post mortem changes in the content and specific radioactivity of several amino acids in four areas of the rat brain. J Neurobiol 2(2):145–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 21175099 and 81171306), the Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents, and the Zhejiang Provincial Project of Key Scientific Group (2010R50042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Chang Gao.

Additional information

H. Zhu is a co-first author in the present study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, HC., Zhu, H., Song, CY. et al. Metabolic Changes Detected by Ex Vivo High Resolution 1H NMR Spectroscopy in the Striatum of 6-OHDA-Induced Parkinson’s Rat. Mol Neurobiol 47, 123–130 (2013). https://doi.org/10.1007/s12035-012-8336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8336-z

Keywords

Navigation