Skip to main content
Log in

Induction of a Proinflammatory Response in Cortical Astrocytes by the Major Metabolites Accumulating in HMG-CoA Lyase Deficiency: the Role of ERK Signaling Pathway in Cytokine Release

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

3-Hydroxy-3-methylglutaric aciduria (HMGA) is an inherited metabolic disorder caused by 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. It is biochemically characterized by predominant tissue accumulation and high urinary excretion of 3-hydroxy-3-methylglutarate (HMG) and 3-methylglutarate (MGA). Affected patients commonly present acute symptoms during metabolic decompensation, including vomiting, seizures, and lethargy/coma accompanied by metabolic acidosis and hypoketotic hypoglycemia. Although neurological manifestations are common, the pathogenesis of brain injury in this disease is poorly known. Astrocytes are important for neuronal protection and are susceptible to damage by neurotoxins. In the present study, we investigated the effects of HMG and MGA on important parameters of redox homeostasis and cytokine production in cortical cultured astrocytes. The role of the metabolites on astrocyte mitochondrial function (thiazolyl blue tetrazolium bromide (MTT) reduction) and viability (propidium iodide incorporation) was also studied. Both organic acids decreased astrocytic mitochondrial function and the concentrations of reduced glutathione without altering cell viability. In contrast, they increased reactive species formation (2′-7′-dichlorofluorescein diacetate (DCFHDA) oxidation), as well as IL-1β, IL-6, and TNF α release through the ERK signaling pathway. Taken together, the data indicate that the principal compounds accumulating in HMGA induce a proinflammatory response in cultured astrocytes that may possibly be involved in the neuropathology of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gibson KM, Breuer J, Nyhan WL (1988) 3-Hydroxy-3-methylglutarylcoenzyme A lyase deficiency: review of 18 reported patients. Eur J Pediatr 148:180–186. doi:10.1007/s10545-009-1048-5

    Article  CAS  PubMed  Google Scholar 

  2. Reimão S, Morgado C, Almeida IT, Silva M, Corte Real H, Campos J (2009) 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: initial presentation in a young adult. J Inherit Metab Dis 32:S49–S52. doi:10.1007/s10545-009-1048-5

    Article  PubMed  Google Scholar 

  3. Kahler SG, Sherwood WG, Woof D, Lawless ST, Zaritsky A, Bonham J, Taylor CJ, Clarke JT, Durie P, Leonard JV (1994) Pancreatitis in patients with organic acidemias. J Pediatr 124:239–243. doi:10.1016/S0022-3476(94)70311-6

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell GA, Jakobs C, Gibson KM, Robert MF, Burlina A, Dionisi-Vici C, Dallaire L (1995) Molecular prenatal diagnosis of 3-hydroxy-3-methylglutaryl-coenzime A lyase deficiency. Prenat Diagn 15:725–729. doi:10.1002/pd.1970150807

    Article  CAS  PubMed  Google Scholar 

  5. Bonafé L, Troxler H, Kuster T, Heizmann CW, Chamoles NA, Burlina AB, Blau N (2000) Evaluation of urinary acylglycines by electrospray tandem mass spectrometry in mitochondrial energy metabolism defects and organic acidurias. Mol Genet Metab 69:302–311. doi:10.1006/mgme.2000.2982

    Article  PubMed  Google Scholar 

  6. Sweetman L, Williams JC (2001) Branched chain organic acidurias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2340–2342

    Google Scholar 

  7. Pié J, López-Viñas E, Puisac B, Menao S, Pie A, Casale C, Ramos FJ, Hegardt FG, Gómez-Puertas P, Casals N (2007) Molecular genetics of HMG-CoA lyase deficiency. J Inherit Metab 92:198–229. doi:10.1016/j.ymgme.2007.06.020

    Google Scholar 

  8. Leung AA, Chan AK, Ezekowitz JA, Leung AK (2009) A case of dilated cardiomyopathy associated with 3-hydroxy-3methylglutaryl-coenzyme A (HMG CoA) lyase deficiency. Case Rep Med 2009:183125. doi:10.1155/2009/183125

    PubMed  PubMed Central  Google Scholar 

  9. Wysocki SJ, Hähnel R (1986) 3-Hydroxy-3-methylglutaryl-coenzyme a lyase deficiency: a review. J Inherit Metab Dis 9:225–233. doi:10.1007/BF01799652

    Article  CAS  PubMed  Google Scholar 

  10. Pospísilová E, Mrázová L, Hrdá J, Martincová O, Zeman J (2003) Biochemical and molecular analyses in three patients with 3-hydroxy-3-methylglutaric aciduria. J Inherit Metab Dis 26:433–441. doi:10.1023/A:1025169210121

    Article  PubMed  Google Scholar 

  11. Yalçinkaya C, Dinçer A, Gündüz E, Fiçicioglu C, Koçer N, Aydin A (1999) MRI and MRS in HMG-CoA lyase deficiency. Pediatr Neurol 20:375–380. doi:10.1016/S0887-8994(99)00013-2

    Article  PubMed  Google Scholar 

  12. Wilson WG, Cass MB, Sovik O, Gibson KM, Sweetman L (1984) A child with acute pancreatitis and recurrent hypoglycemia due to 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Eur J Pediatr 142:289–291. doi:10.1007/B00540255

    Article  CAS  PubMed  Google Scholar 

  13. Zoghbi H, Spence E, Beaudet A, O’Brien WE, Goodman CJ, Gibson KM (1986) Atypical presentation and neuropathological studies in 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency. Ann Neurol 20:367–369. doi:10.1002/ana.410200318

    Article  CAS  PubMed  Google Scholar 

  14. Gibson KM, Cassidy SB, Seaver LH, Wanders RJ, Mitchell GA, Spark RP (1994) Fatal cardiomyopathy associated with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 17:291–294. doi:10.1007/BF00711810

    Article  CAS  PubMed  Google Scholar 

  15. Muroi J, Yorifuji T, Uematsu A, Nakahata T (2000) Cerebral infarction and pancreatitis: possible complications of patients with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 23:636–637. doi:10.1023/A:1005642316174

    Article  CAS  PubMed  Google Scholar 

  16. Urgançi N, Arapoglu M, Evrüke M, Aydin A (2001) A rare cause of hepatomegaly: 3-hydroxy-3-methylglutaryl coenzyme-a lyase deficiency. J Pediatr Gastroenterol Nutr 33:339–341

    Article  PubMed  Google Scholar 

  17. Zafeiriou DI, Vargiami E, Mayapetek E, Augoustidou-Sawopoulou P, Mitchell GA (2007) 3-Hydroxy-3-methylglutaryl coenzyme a lyase deficiency with reversible white matter changes after treatment. Pediatr Neurol 37:47–50. doi:10.1016/j.pediatrneurol.2007.02.007

    Article  PubMed  Google Scholar 

  18. van der Knaap MS, Bakker HD, Valk J (1998) MR imaging and proton spectroscopy in 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency. Am J Neuroradiol 19:378–382

    PubMed  Google Scholar 

  19. Yýlmaz Y, Ozdemir N, Ekinci G, Bayaka T, Kocaman C (2006) Corticospinal tract involvement in a patient with 3-HMG coenzyme A lyase deficiency. Pediatr Neurol 35:139–141. doi:10.1016/j.pediatrneurol.2006.01.009

    Article  PubMed  Google Scholar 

  20. Kahlert S, Reiser G (2004) Glial perspectives of metabolic states during cerebral hypoxia-calcium regulation and metabolic energy. Cell Calcium 36:295–302. doi:10.1016/j.ceca.2004.02.009

    Article  CAS  PubMed  Google Scholar 

  21. Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72:111–127. doi:10.1016/j.pneurobio.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  22. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. doi:10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  23. Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41:232–241. doi:10.1007/s12035-010-8098-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743. doi:10.1016/j.tins.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  25. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375. doi:10.1056/NEJMra022366

    Article  CAS  PubMed  Google Scholar 

  26. Leipnitz G, Seminotti B, Haubrich J, Dalcin KB, Solano A, de Bortoli G, Rosa RB, Amaral AU, Dutra-Filho CS, Latini A, Wajner M (2008) Evidence that 3-hydroxy-3-methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex. J Neurosci Res 86:683–693. doi:10.1002/jnr.21527

    Article  CAS  PubMed  Google Scholar 

  27. Leipnitz G, Seminotti B, Amaral AU, de Bortoli G, Solano A, Schuck PF, Wyse AT, Wannmacher CM, Latini A, Wajner M (2008) Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats. Life Sci 82:652–662. doi:10.1016/j.lfs.2007.12.024

    Article  CAS  PubMed  Google Scholar 

  28. Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, da Silva LB, Zanatta A, Ribeiro CA, Vargas CR, Wajner M (2009) Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3-hydroxy-4-methylglutaryl-CoA lyase deficiency as compared to liver. Int J Dev Neurosci 27:351–356. doi:10.1016/j.ijdevneu.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  29. Fernandes CG, da Rosa MS, Seminotti B, Pierozan P, Martell RW, Lagranha VL, Busanello ENB, Leipnitz G, Wajner M (2013) In vivo experimental evidence that the major metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency induce oxidative stress in striatum of developing rats: a potential pathophysiological mechanism of striatal damage in this disorder. Mol Genet Metab 109:144–153. doi:10.1016/j.ymgme.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  30. Ribeiro CA, Hickmann FH, Wajner M (2011) Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+, K+−ATPase activity probably through oxidative damage in brain cortex of young rats. Int J Dev Neurosci 29:1–7. doi:10.1016/j.ijdevneu.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  31. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310. doi:10.1006/meth.1998.0686

    Article  CAS  PubMed  Google Scholar 

  32. Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588. doi:10.1007/s11064-012-0868-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A, Gonçalves CA, Gottfried C (2009) The janus face of resveratrol in astroglial cells. Neurotox Res 16:30–41. doi:10.1007/s12640-009-9042-0

    Article  CAS  PubMed  Google Scholar 

  34. Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS One 8, e60282. doi:10.1371/journal.pone.0060282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. dos Santos AQ, Nardin P, Funchal C, de Almeida LM, Jacques-Silva MC, Wofchuk ST, Gonçalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167. doi:10.1016/j.abb.2006.06.025

    Article  PubMed  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  37. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14. doi:10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  38. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530. doi:10.1016/j.tins.2003.08.008

    Article  CAS  PubMed  Google Scholar 

  39. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367. doi:10.1016/j.pneurobio.2008.09.015

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. doi:10.1016/j.cmet.2011.08.016

    Article  PubMed  Google Scholar 

  41. Purpura KA, Bratt-Leal AM, Hammersmith KA, McDevitt TC, Zandstra PW (2012) Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials 33:1271–1280. doi:10.1016/j.biomaterials.2011.10.051

    Article  CAS  PubMed  Google Scholar 

  42. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7. doi:10.1007/978-1-61779-452-0_1

    Article  CAS  PubMed  Google Scholar 

  43. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671. doi:10.1016/S0301-0082(99)00060-X

    Article  CAS  PubMed  Google Scholar 

  44. Pope SA, Milton R, Heales SJ (2008) Astrocytes protect against copper-catalysed loss of extracellular glutathione. Neurochem Res 33:1410–1418. doi:10.1007/s11064-008-9602-3

    Article  CAS  PubMed  Google Scholar 

  45. Sarafian TA, Bredesen DE, Verity MA (1996) Cellular resistance to methylmercury. Neurotoxicology 17:27–36

    CAS  PubMed  Google Scholar 

  46. Castoldi AF, Coccini T, Manzo L (2001) Biological markers of neurotoxic diseases. Funct Neurol 16:39–44

    CAS  PubMed  Google Scholar 

  47. Tsai MJ, Lee EH (1994) Differences in the disposition and toxicity of 10-methyl-4-phenylpyridinium in cultured rat and mouse astrocytes. Glia 12:329–335. doi:10.1002/glia.440120409

    Article  CAS  PubMed  Google Scholar 

  48. Alarcón-Aguilar A, González-Puertos VY, Luna-Lopéz A, López-Macay A, Morán J, Santamaría A, Königsberg M (2014) Comparing the effects of two neurotoxins in cortical astrocytes obtained from rats of different ages: involvement of oxidative damage. J Appl Toxicol 34:127–138. doi:10.1002/jat.2841

    Article  PubMed  Google Scholar 

  49. Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O (2010) Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 7:16. doi:10.1186/1742-2094-7-16

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24:2533–2545. doi:10.1096/fj.09-149997

    Article  CAS  PubMed  Google Scholar 

  51. Santello M, Bezzi P, Volterra A (2011) TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001. doi:10.1016/j.neuron.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  52. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266. doi:10.7150/ijbs.4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ye L, Huang Y, Zhao L, Li Y, Sun L, Zhou Y, Qian G, Zheng JC (2013) IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 125:897–908. doi:10.1111/jnc.12263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Darlington CL (2005) Astrocytes as targets for neuroprotective drugs. Curr Opin Investig Drugs 6:700–703

    CAS  PubMed  Google Scholar 

  55. Kanwar SS, Nehru B (2007) Modulatory effects of N-acetylcysteine on cerebral cortex and cerebellum regions of ageing rat brain. Nutr Hosp 22:95–100

    CAS  PubMed  Google Scholar 

  56. Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565:7–13. doi:10.1016/j.neulet.2014.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bobermin LD, Quincozes-Santos A, Guerra MC, Leite MC, Souza DO, Gonçalves CA, Gottfried C (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PLoS One 7, e52164. doi:10.1371/journal.pone.0052164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505. doi:10.1016/j.bcp.2006.04.011

    Article  CAS  PubMed  Google Scholar 

  59. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW (2010) When NRF2 talks, who’s listening? Antioxid Redox Signal 13:1649–1663. doi:10.1089/ars.2010.3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145. doi:10.1016/j.it.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  61. Tanabe K, Kozawa O, Iida H (2011) Midazolam suppresses interleukin-1beta-induced interleukin-6 release from rat glial cells. J Neuroinflammation 8:68. doi:10.1186/1742-2094-8-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL (1993) Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis 16:648–669. doi:10.1007/BF00711898

    Article  CAS  PubMed  Google Scholar 

  63. Hoffmann GF, Gibson KM, Trefz FK, Nyhan WL, Bremer HJ, Rating D (1994) Neurological manifestations of organic acid disorders. Eur J Pediatr 153:S94–S100. doi:10.1007/BF02138774

    Article  CAS  PubMed  Google Scholar 

  64. Sauer SW, Okun JG, Fricker G, Mahringer A, Müller I, Crnic LR, Mühlhausen C, Hoffmann GF, Hörster F, Goodman SI, Harding CO, Koeller DM, Kölker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood–brain barrier constitutes a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97:899–910. doi:10.1111/j.1471-4159.2006.03813.x

    Article  CAS  PubMed  Google Scholar 

  65. Stellmer F, Keyser B, Burckhardt BC, Koepsell H, Streichert T, Glatzel M, Jabs S, Thiem J, Herdering W, Koeller DM, Goodman SI, Lukacs Z, Ullrich K, Burckhardt G, Braulke T, Mühlhausen C (2007) 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J Mol Med (Berl) 85:763–770. doi:10.1007/s00109-007-0174-5

    Article  CAS  Google Scholar 

  66. Singh P, Jain A, Kaur G (2004) Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem 260:153–159. doi:10.1023/B:MCBI.0000026067.08356.13

    Article  CAS  PubMed  Google Scholar 

  67. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918. doi:10.1172/JCI30077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schutgens RB, Heymans H, Ketel A, Veder HA, Duran M, Ketting D, Wadman SK (1979) Lethal hypoglycemia in a child with a deficiency of 3-hydroxy-3-methylglutarylcoenzyme A lyase. J Pediatr 94:89–91. doi:10.1016/S0022-3476(79)80364-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, no 470236/2012-4), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, no 10/0031-1), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, no 2011/50400-0), Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS, no PIBITI 18489), Rede Instituto Brasileiro de Neurociência (IBN-Net) (no 01.06.0842-00), and Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN, no 573677/2008-5).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, C.G., Rodrigues, M.D.N., Seminotti, B. et al. Induction of a Proinflammatory Response in Cortical Astrocytes by the Major Metabolites Accumulating in HMG-CoA Lyase Deficiency: the Role of ERK Signaling Pathway in Cytokine Release. Mol Neurobiol 53, 3586–3595 (2016). https://doi.org/10.1007/s12035-015-9289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9289-9

Keywords

Navigation