Skip to main content

Advertisement

Log in

Circulating microRNA Signatures in Rodent Models of Pain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) remain stable in circulation and have been identified as potential biomarkers for a variety of conditions. We report miRNA changes in blood from multiple rodent models of pain, including spinal nerve ligation and spared nerve injury models of neuropathic pain; a complete Freund’s adjuvant (CFA) model of inflammatory pain; and a chemotherapy-induced model of pain using the histone deacetylase inhibitor JNJ-26481585. The effect of celecoxib, a cyclooxygenase-2-selective nonsteroidal anti-inflammatory drug, was investigated in the CFA model as proof of principle for assessing the utility of circulating miRNAs as biomarkers in determining treatment response. Each study resulted in a unique miRNA expression profile. Despite differences in miRNAs identified from various models, computational target prediction and functional enrichment have identified biological pathways common among different models. The Wnt signaling pathway was affected in all models, suggesting a crucial role for this pathway in the pathogenesis of pain. Our studies demonstrate the utility of circulating miRNAs as pain biomarkers and suggest the potential for rigorous forward and reverse translational approaches. Evaluating alterations in miRNA fingerprints under different pain conditions and after administering therapeutic agents may be beneficial in evaluating clinical trial outcomes, predicting treatment response, and developing correlational outcomes between preclinical and human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gereau IV RW, Sluka KA, Maixner W, Savage SR, Price TJ, Murinson BB, Sullivan MD and Fillingim RB A Pain Research Agenda for the 21st Century. J. Pain

  2. Borsook D, Becerra L, Hargreaves R (2011) Biomarkers for chronic pain and analgesia. Part 1: the need, reality, challenges, and solutions. Discov Med 11:197–207

    PubMed  Google Scholar 

  3. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466

    Article  PubMed  PubMed Central  Google Scholar 

  4. DeVon HA, Piano MR, Rosenfeld AG, Hoppensteadt DA (2014) The association of pain with protein inflammatory biomarkers: a review of the literature. Nurs Res 63:51–62. doi:10.1097/NNR.0000000000000013

    Article  PubMed  Google Scholar 

  5. Marchi A, Vellucci R, Mameli S, Rita Piredda A, Finco G (2009) Pain biomarkers. Clin Drug Investig 29(Suppl 1):41–46

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–104

    Article  CAS  PubMed  Google Scholar 

  8. Etheridge A, Lee I, Hood L, Galas D and Wang, K (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res

  9. Kynast KL, Russe OQ, Geisslinger G, Niederberger E (2013) Novel findings in pain processing pathways: implications for miRNAs as future therapeutic targets. Expert Rev Neurother 13:515–525

    Article  CAS  PubMed  Google Scholar 

  10. Kress M, Hüttenhofer A, Landry M, Kuner R, Favereaux A, Greenberg DS, Bednarik J, Heppenstall P, Kronenberg F, Malcangio M et al (2013) MicroRNAs in nociceptive circuits as predictors of future clinical applications. Front Mol Neurosci 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bali KK, Kuner R (2014) Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med 20:437–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan P-H, Pao Y-Y, Cheng J-K, Hung K-C, Liu C-C (2013) MicroRNA-based therapy in pain medicine: current progress and future prospects. Acta Anaesthesiol Taiwan 51:171–176

    Article  PubMed  Google Scholar 

  13. Elramah S, Landry M, Favereaux A (2014) MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front Cell Neurosci 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sakai A and Suzuki H (2014) Emerging roles of microRNAs in chronic pain. Neurochem Int

  15. Mogil JS, Davis KD, Derbyshire SW (2010) The necessity of animal models in pain research. Pain 151:12–17

    Article  PubMed  Google Scholar 

  16. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA (2013) An overview of animal models of pain: disease models and outcome measures. J Pain 14:1255–1269

    Article  PubMed  Google Scholar 

  17. Percie du Sert N, Rice AS (2014) Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain. Br J Pharmacol 171:2951–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boon RA, Vickers KC (2013) Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol 33:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El Andaloussi S, Mager I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  Google Scholar 

  21. Bjersing JL, Lundborg C, Bokarewa MI, Mannerkorpi K (2013) Profile of cerebrospinal microRNAs in fibromyalgia. PLoS ONE 8, e78762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ammari M, Jorgensen C, Apparailly F (2013) Impact of microRNAs on the understanding and treatment of rheumatoid arthritis. Curr Opin Rheumatol 25:225–233

    Article  CAS  PubMed  Google Scholar 

  23. Shen N, Liang D, Tang Y, de Vries N, Tak PP (2012) MicroRNAs–novel regulators of systemic lupus erythematosus pathogenesis. Nat Rev Rheumatol 8:701–709

    Article  CAS  PubMed  Google Scholar 

  24. Fourie NH, Peace RM, Abey SK, Sherwin LB, Rahim-Williams B, Smyser PA, Wiley JW, Henderson WA (2014) Elevated circulating miR-150 and miR-342-3p in patients with irritable bowel syndrome. Exp Mol Pathol 96:422–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orlova IA, Alexander GM, Qureshi RA, Sacan A, Graziano A, Barrett JE, Schwartzman RJ, Ajit SK (2011) MicroRNA modulation in complex regional pain syndrome. J Transl Med 9:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gheinani A, Burkhard F, Monastyrskaya K (2013) Deciphering microRNA code in pain and inflammation: lessons from bladder pain syndrome. Cell Mol Life Sci 70:3773–3789

    Article  CAS  PubMed  Google Scholar 

  27. Ohlsson Teague EMC, Print CG, Hull ML (2010) The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 16:142–165

    Article  CAS  Google Scholar 

  28. Fabbri M, Paone A, Calore F, Galli R, Croce CM (2013) A new role for microRNAs, as ligands of toll-like receptors. RNA Biol 10:169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park CK, Xu ZZ, Berta T, Han Q, Chen G, Liu XJ, Ji RR (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  CAS  PubMed  Google Scholar 

  31. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  CAS  PubMed  Google Scholar 

  32. Capasso K, Manners M, Quershi R, Tian Y, Gao R, Hu H, Barrett J, Sacan A and Ajit S (2014) Effect of Histone Deacetylase Inhibitor JNJ-26481585 in Pain. J Mol Neurosci 1–9

  33. Qureshi R, Sacan A (2013) A novel method for the normalization of microRNA RT-PCR data. BMC Med Genet 6:S14

    Google Scholar 

  34. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  35. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  37. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  38. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  Google Scholar 

  39. Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10:283–294

    Article  CAS  PubMed  Google Scholar 

  40. Kawaguchi M, Satoh Y, Otsubo Y, Kazama T (2014) Molecular hydrogen attenuates neuropathic pain in mice. PLoS ONE 9, e100352

    Article  PubMed  PubMed Central  Google Scholar 

  41. von Schack D, Agostino MJ, Murray BS, Li Y, Reddy PS, Chen J, Choe SE, Strassle BW, Li C, Bates B et al (2011) Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One 6, e17670

    Article  Google Scholar 

  42. Kusuda R, Cadetti F, Ravanelli M, Sousa T, Zanon S, De Lucca F, Lucas G (2011) Differential expression of microRNAs in mouse pain models. Mol Pain 7:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T (2009) Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 164:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong L-F (2011) Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS ONE 6, e23423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tan P-H and Liu C-C (2013) 39th annual regional anesthesiology and acute pain medicine meeting. American Society of Regional Anesthesia and Pain Medicine

  46. Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC (2011) MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 186:146–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curtale G, Renzi TA, Locati M (2012) P142 miR-146b: IL-10-dependent negative regulator of inflammation. Cytokine 59:565

    Article  Google Scholar 

  48. Sisignano M, Baron R, Scholich K and Geisslinger G (2014) Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol, advance online publication

  49. Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, Colvin LA and Fallon M Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. PAIN®

  50. Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RWT, Copani A, Nicoletti F (2009) Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol 75:1014–1020

    Article  CAS  PubMed  Google Scholar 

  51. Bai G, Wei D, Zou S, Ren K, Dubner R (2010) Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 6:51

    PubMed  PubMed Central  Google Scholar 

  52. Denk F, Huang W, Sidders B, Bithell A, Crow M, Grist J, Sharma S, Ziemek D, Rice ASC, Buckley NJ et al (2013) HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain 154:1668–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun Y, Sahbaie P, Liang DY, Li WW, Li XQ, Shi XY, Clark JD (2013) Epigenetic regulation of spinal CXCR2 signaling in incisional hypersensitivity in mice. Anesthesiology 119:1198–1208

    Article  CAS  PubMed  Google Scholar 

  54. Liang D-Y, Sun Y, Shi X-Y, Sahbaie P, Clark J (2014) Epigenetic regulation of spinal cord gene expression controls opioid-induced hyperalgesia. Mol Pain 10:59

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen L, Yang G, Grosser T (2013) Prostanoids and inflammatory pain. Prostaglandins Lipid Mediat 104–105:58–66

    Article  Google Scholar 

  56. Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalán-Campos J, Hartmann P, Thiemann A, Weber C, Schober A (2013) The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155–dependent pathway during atherosclerosis. Circulation 127:1609–1619

    Article  CAS  PubMed  Google Scholar 

  57. Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT (2014) MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 307:L727–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sonkoly E, Ståhle M, Pivarcsi A (2008) MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 18:131–140

    Article  CAS  PubMed  Google Scholar 

  59. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi Y, Yuan S, Li B, Wang J, Carlton S, Chung K, Chung J, Tang S-J (2012) Regulation of Wnt signaling by nociceptive input in animal models. Mol Pain 8:47

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ (2013) WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest 123:2268–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simonetti M, Agarwal N, Stösser S, Bali KK, Karaulanov E, Kamble R, Pospisilova B, Kurejova M, Birchmeier W, Niehrs C et al (2014) Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron 83:104–121

    Article  CAS  PubMed  Google Scholar 

  64. Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR et al (2010) Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30:10860–10871

    Article  CAS  PubMed  Google Scholar 

  65. LaCroix-Fralish ML, Austin JS, Zheng FY, Levitin DJ, Mogil JS (2011) Patterns of pain: meta-analysis of microarray studies of pain. Pain 152:1888–1898

    Article  PubMed  Google Scholar 

  66. Rosso SB, INESTROSA NC, Rosso SB (2013) WNT signalling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuner R (2010) Central mechanisms of pathological pain. Nat Med 16:1258–1266

    Article  CAS  PubMed  Google Scholar 

  68. Ueno K, Hirata H, Hinoda Y, Dahiya R (2013) Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. Int J Cancer 132:1731–1740

    Article  CAS  PubMed  Google Scholar 

  69. Schepeler T (2013) Emerging roles of MicroRNAs in the Wnt signaling network. Crit Rev Oncog 18:357–371

    Article  PubMed  Google Scholar 

  70. Zhang L, Wrana JL (2014) The emerging role of exosomes in Wnt secretion and transport. Curr Opin Genet Dev 27:14–19

    Article  PubMed  Google Scholar 

  71. McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, Aradillas Lopez E, Alexander GM, Sacan A, Fortina P et al (2014) Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155:1527–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M (2014) Endogenous RNAs modulate MicroRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446

    Article  CAS  PubMed  Google Scholar 

  73. Jaggi AS, Jain V, Singh N (2011) Animal models of neuropathic pain. Fundam Clin Pharmacol 25:1–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Huijuan Hu for critical reading of the manuscript.

Funding

This work was supported by a grant from the Rita Allen Foundation to Seena Ajit.

Compliance with Ethical Standards

The study was approved by the Institutional Animal Care and Use Committee of Drexel University College of Medicine and the experiments were performed in accordance with the guidelines of the National Institutes of Health.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seena K. Ajit or Ahmet Sacan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, R.A., Tian, Y., McDonald, M.K. et al. Circulating microRNA Signatures in Rodent Models of Pain. Mol Neurobiol 53, 3416–3427 (2016). https://doi.org/10.1007/s12035-015-9281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9281-4

Keywords

Navigation