Skip to main content

Advertisement

Log in

Sulforaphane Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity by Activating the Keap1-Nrf2-ARE Pathway and Inhibiting the MAPKs and NF-κB Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The potential neuroprotective value of sulforaphane (SFN) in Huntington’s disease (HD) has not been established yet. We investigated whether SFN prevents and improves the neurological impairment and striatal cell death in a 3-nitropropionic acid (3-NP)-induced mouse model of HD. SFN (2.5 and 5.0 mg/kg/day, i.p.) was given daily 30 min before 3-NP treatment (pretreatment) and from onset/progression/peak points of the neurological scores. Pretreatment with SFN (5.0 mg/kg/day) produced the best neuroprotective effect with respect to the neurological scores and lethality among other conditions. The protective effects due to pretreatment with SFN were associated with the following: suppression of the formation of a lesion area, neuronal death, succinate dehydrogenase activity, apoptosis, microglial activation, and mRNA or protein expression of inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NP treatment. Also, pretreatment with SFN activated the Kelch-like ECH-associated protein 1 (Keap1)—nuclear factor erythroid 2-related factor 2 (Nrf2)—antioxidant response element (ARE) pathway and inhibited the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways in the striatum after 3-NP treatment. As expected, the pretreatment with activators (dimethyl fumarate and antioxidant response element inducer-3) of the Keap1-Nrf2-ARE pathway decreased the neurological impairment and lethality after 3-NP treatment. Our findings suggest that SFN may effectively attenuate 3-NP-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways and that SFN has a wide therapeutic time-window for HD-like symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Damiano M, Galvan L, Deglon N, Brouillet E (2010) Mitochondria in Huntington's disease. Biochim Biophys Acta 1802:52–61

    Article  CAS  PubMed  Google Scholar 

  2. Gil-Mohapel J, Brocardo PS, Christie BR (2014) The role of oxidative stress in Huntington's disease: are antioxidants good therapeutic candidates? Curr Drug Targets 15:454–468

    Article  CAS  PubMed  Google Scholar 

  3. Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM et al (1999) Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann Neurol 45:25–32

    Article  CAS  PubMed  Google Scholar 

  4. Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM et al (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington's disease patients. Biochem Biophys Res Commun 359:335–340

    Article  CAS  PubMed  Google Scholar 

  5. Benchoua A, Trioulier Y, Diguet E, Malgorn C, Gaillard MC et al (2008) Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum Mol Genet 17:1446–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Block ML, Hong JS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35:1127–1132

    Article  CAS  PubMed  Google Scholar 

  7. Fernagut PO, Diguet E, Stefanova N, Biran M, Wenning GK et al (2002) Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57Bl/6 mice: behavioural and histopathological characterisation. Neuroscience 114:1005–1017

    Article  CAS  PubMed  Google Scholar 

  8. Tunez I, Tasset I, Perez-De La Cruz V, Santamaria A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future. Molecules 15:878–916

    Article  CAS  PubMed  Google Scholar 

  9. Jang M, Lee MJ, Kim CS, Cho IH (2013) Korean red ginseng extract attenuates 3-nitropropionic acid-induced Huntington's-like symptoms. Evid Based Complement Alternat Med 2013:237207

    PubMed  PubMed Central  Google Scholar 

  10. Jang M, Lee MJ, Cho IH (2014) Ethyl pyruvate ameliorates 3-nitropropionic acid-induced striatal toxicity through anti-neuronal cell death and anti-inflammatory mechanisms. Brain Behav Immun 38:151–165

    Article  CAS  PubMed  Google Scholar 

  11. Shinomol GK, Bharath MM, Muralidhara (2012) Pretreatment with Bacopa monnieri extract offsets 3-nitropropionic acid induced mitochondrial oxidative stress and dysfunctions in the striatum of prepubertal mouse brain. Can J Physiol Pharmacol 90:595–606

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 34:340–346

    Article  CAS  PubMed  Google Scholar 

  13. Copple IM (2012) The Keap1-Nrf2 cell defense pathway—a promising therapeutic target? Adv Pharmacol 63:43–79

    Article  CAS  PubMed  Google Scholar 

  14. Joshi G, Johnson JA (2012) The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Houghton CA, Fassett RG, Coombes JS (2013) Sulforaphane: translational research from laboratory bench to clinic. Nutr Rev 71:709–726

    Article  PubMed  Google Scholar 

  16. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, de Rivero Vaccari JP, Wang H, Diaz P, German R et al (2012) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 29:936–945

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S et al (2013) Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev 2013:415078

    Article  PubMed  PubMed Central  Google Scholar 

  19. Benedict AL, Mountney A, Hurtado A, Bryan KE, Schnaar RL et al (2012) Neuroprotective effects of sulforaphane after contusive spinal cord injury. J Neurotrauma 29:2576–2586

    Article  PubMed  PubMed Central  Google Scholar 

  20. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L et al (2011) Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington's disease. PLoS One 6, e16172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692

    Article  PubMed  Google Scholar 

  23. Wang R, Mason DE, Choe KP, Lewin AS, Peters EC et al (2013) In vitro and in vivo characterization of a tunable dual-reactivity probe of the Nrf2-ARE pathway. ACS Chem Biol 8:1764–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates; third, editor. Elsevier Academic Press, San Iego

    Google Scholar 

  25. Brouillet E, Guyot MC, Mittoux V, Altairac S, Conde F et al (1998) Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J Neurochem 70:794–805

    Article  CAS  PubMed  Google Scholar 

  26. Lee MJ, Jang M, Choi J, Lee G, Min HJ, et al. (2015) Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Mol Neurobiol. doi:10.1007/s12035-014-9012-2

  27. Cho IH, Hong J, Suh EC, Kim JH, Lee H et al (2008) Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 131:3019–3033

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hong J, Cho IH, Kwak KI, Suh EC, Seo J et al (2010) Microglial Toll-like receptor 2 contributes to kainic acid-induced glial activation and hippocampal neuronal cell death. J Biol Chem 285:39447–39457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  30. Brouillet E (2014) The 3-NP Model of Striatal Neurodegeneration. Curr Protoc Neurosci. 67:9.48.1-9.48.14. doi:10.1002/0471142301.ns0948s67

  31. Dedeoglu A, Ferrante RJ, Andreassen OA, Dillmann WH, Beal MF (2002) Mice overexpressing 70-kDa heat shock protein show increased resistance to malonate and 3-nitropropionic acid. Exp Neurol 176:262–265

    Article  CAS  PubMed  Google Scholar 

  32. Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10:1355–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Foresti R, Bains SK, Pitchumony TS, de Castro Bras LE, Drago F et al (2013) Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol Res 76:132–148

    Article  CAS  PubMed  Google Scholar 

  34. Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML et al (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    Article  CAS  PubMed  Google Scholar 

  35. Kim D, You B, Jo EK, Han SK, Simon MI et al (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107:14851–14856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brandenburg LO, Kipp M, Lucius R, Pufe T, Wruck CJ (2010) Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflamm Res 59:443–450

    Article  CAS  PubMed  Google Scholar 

  37. Koh K, Cha Y, Kim S, Kim J (2009) tBHQ inhibits LPS-induced microglial activation via Nrf2-mediated suppression of p38 phosphorylation. Biochem Biophys Res Commun 380:449–453

    Article  CAS  PubMed  Google Scholar 

  38. Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-kappaB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res 8:294–304

    Article  CAS  PubMed  Google Scholar 

  39. Kumar P, Kumar A (2009) Possible role of sertraline against 3-nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 33:100–108

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, Chu CH, Qian L, Chen SH, Wilson B et al (2014) Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase. J Neurosci 34:12490–12503

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kumar A, Chen SH, Kadiiska MB, Hong JS, Zielonka J et al (2014) Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells. Free Radic Biol Med 73:51–59

    Article  CAS  PubMed  Google Scholar 

  42. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  CAS  PubMed  Google Scholar 

  43. Gao Y, Chu SF, Li JP, Zuo W, Wen ZL et al (2014) Do glial cells play an anti-oxidative role in Huntington's disease? Free Radic Res 48:1135–1144

    Article  CAS  PubMed  Google Scholar 

  44. van Roon-Mom WM, Pepers BA, t Hoen PA, Verwijmeren CA, den Dunnen JT et al (2008) Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease. BMC Mol Biol 9:84

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stack C, Ho D, Wille E, Calingasan NY, Williams C et al (2010) Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington's disease. Free Radic Biol Med 49:147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington's disease: what's in the pipeline? Mov Disord 29:1434–1445

    Article  CAS  PubMed  Google Scholar 

  47. Harper SJ, Wilkie N (2003) MAPKs: new targets for neurodegeneration. Expert Opin Ther Targets 7:187–200

    Article  CAS  PubMed  Google Scholar 

  48. Sugino T, Nozaki K, Hashimoto N (2000) Activation of mitogen-activated protein kinases in gerbil hippocampus with ischemic tolerance induced by 3-nitropropionic acid. Neurosci Lett 278:101–104

    Article  CAS  PubMed  Google Scholar 

  49. Liu YF, Dorow D, Marshall J (2000) Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin. J Biol Chem 275:19035–19040

    Article  CAS  PubMed  Google Scholar 

  50. Choi YJ, Lee WS, Lee EG, Sung MS, Yoo WH (2014) Sulforaphane inhibits IL-1beta-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of MMPs, COX-2, and PGE2. Inflammation 37:1496–1503

    Article  CAS  PubMed  Google Scholar 

  51. Yang LP, Zhu XA, Tso MO (2007) Minocycline and sulforaphane inhibited lipopolysaccharide-mediated retinal microglial activation. Mol Vis 13:1083–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsieh CC, Rosenblatt JI, Papaconstantinou J (2003) Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acid. Mech Ageing Dev 124:733–746

    Article  CAS  PubMed  Google Scholar 

  53. Juo P, Kuo CJ, Reynolds SE, Konz RF, Raingeaud J et al (1997) Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol Cell Biol 17:24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bezprozvanny I, Hayden MR (2004) Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun 322:1310–1317

    Article  CAS  PubMed  Google Scholar 

  55. Yang LP, Zhu XA, Tso MO (2007) Role of NF-kappaB and MAPKs in light-induced photoreceptor apoptosis. Invest Ophthalmol Vis Sci 48:4766–4776

    Article  PubMed  Google Scholar 

  56. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH et al (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24:7999–8008

    Article  CAS  PubMed  Google Scholar 

  57. Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid-induced Huntington's disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164:644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2014R1A2A1A11051240).

Conflict of Interest

All the authors of this manuscript have no conflict of interest in this subject.

Authors’ Contributions

MJ performed the behavioral experiments, immunohistochemistry, PCR analysis, and Western blots and also prepared the figures. IHC conceived all experiments, analyzed the results, and wrote the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik-Hyun Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

The effect of pre-, onset-, progression-, and peak-treatment with SFN in neurological score or body weight by the 3-NP treatment. (A and B) Pre-, onset-, and progression-treatment with SFN (2.5 or 5.0 mg/kg/day, i.p.) did not recover the reduced mean body weight stemming from 3-NP-treatment. (C-E) The peak-treatment with SFN (5.0 mg/kg/day, i.p.) did not show positive effects on the neurological scores (C), survival rate (D), and mean body weight (E) caused by the 3-NP-treatment. Neurological disorders in the sham control were not detected and the bar is displayed as N.D. (not detected) in graphs (C). The 4th and 8d refer to the 24 hours after the last (4th) 3-NP treatment and the 8 days after the last 3-NP treatment, respectively. Statistical significance: # P < 0.05 vs. sham-treated mice. (PDF 18.7 kb)

Supplementary Figure 2

Pretreatment with SFN reduced striatal lesions caused by 3-NP treatment. (A and B) The proportion of mice with striatal lesion (A) and mean striatal lesion area (B) were analyzed using sections stained with cresyl violet dye (Fig. 2c-g). Both items were decreased by pretreatment with 2.5 and 5.0 mg/kg/day of SFN in a dose-dependant manner. Striatal lesions in sham-treated and SFN alone-treated mice were not detected (N.D.). Statistical significance: * P < 0.01, ** P < 0.05 vs. 3-NP-treated mice; # P < 0.05 vs. sham-treated mice. (PDF 1.22 mb)

Supplementary Figure 3

Activation of astrocytes was not affected by treatment with 3-NP or SFN. (A-G) Striatal sections were stained with anti-GFAP antibody 24 hours after the last (4th) 3-NP-treatment. Insets display high magnification micrographs of the areas marked with squares (A-D). The astrocytes were not affected by treatment with 3-NP or SFN. Scale bar = 100 μm. Striatal tissues 12 hours after the last 3-NP-treatment were analyzed by real-time PCR analysis (E). Striatal tissues 24 hours after the last 3-NP-treatment were analyzed by Western blot analysis using a GFAP antibody (F and G). The mRNA and protein expression of GFAP were not affected by treatment with 3-NP or SFN. Statistical significance: # P < 0.01 vs. sham-treated mice. (PDF 1.22 mb)

Supplementary Table 1

PCR primer sequence for PCR analysis. (PDF 1.22 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, M., Cho, IH. Sulforaphane Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity by Activating the Keap1-Nrf2-ARE Pathway and Inhibiting the MAPKs and NF-κB Pathways. Mol Neurobiol 53, 2619–2635 (2016). https://doi.org/10.1007/s12035-015-9230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9230-2

Keywords

Navigation