Skip to main content
Log in

Zinc Is Involved in Depression by Modulating G Protein-Coupled Receptor Heterodimerization

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

5-Hydroxytryptamine 1A receptor and galanin receptor 1 belong to the G protein-coupled receptors superfamily, and they have been described to heterodimerize triggering an anomalous physiological state that would underlie depression. Zinc supplementation has been widely reported to improve treatment against major depressive disorder. Our work has focused on the study and characterization of these receptors and its relationships with zinc both under purified conditions and in cell culture. To this aim, we have designed a strategy to purify the receptors in a conformationally active state. We have used receptors tagged with the monoclonal Rho-1D4 antibody and employed ligand-assisted purification in order to successfully purify both receptors in a properly folded and active state. The interaction between both purified receptors has been analyzed by surface plasmon resonance in order to determine the kinetics of dimerization. Zinc effect on heteromer has also been tested using the same methodology but exposing the 5-hydroxytryptamine 1A receptor to zinc before the binding experiment. These results, combined with Förster resonance energy transfer (FRET) measurements, in the absence and presence of zinc, suggest that this ion is capable of disrupting this interaction. Moreover, molecular modeling suggests that there is a coincidence between zinc-binding sites and heterodimerization interfaces for the serotonin receptor. Our results establish a rational explanation for the role of zinc in the molecular processes associated with receptor-receptor interactions and its relationship with depression, in agreement with previously reported evidence for the positive effects of zinc in depression treatment, and the involvement of our target dimer in the same disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641. doi:10.1021/cr078224o

    Article  CAS  PubMed  Google Scholar 

  2. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213. doi:10.1016/j.bbr.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  3. Lesch KP (1991) 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuro-Psychopharmacol Biol Psychiatry 15(6):723–733

    Article  CAS  Google Scholar 

  4. Gorinski N, Kowalsman N, Renner U, Wirth A, Reinartz MT, Seifert R, Zeug A, Ponimaskin E, Niv MY (2012) Computational and experimental analysis of the transmembrane domain 4/5 dimerization interface of the serotonin 5-HT(1A) receptor. Mol Pharmacol 82(3):448–463. doi:10.1124/mol.112.079137

    Article  CAS  PubMed  Google Scholar 

  5. Cussac D, Rauly-Lestienne I, Heusler P, Finana F, Cathala C, Bernois S, De Vries L (2012) mu-Opioid and 5-HT1A receptors heterodimerize and show signalling crosstalk via G protein and MAP-kinase pathways. Cell Signal 24(8):1648–1657. doi:10.1016/j.cellsig.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  6. Borroto-Escuela DO, Narvaez M, Marcellino D, Parrado C, Narvaez JA, Tarakanov AO, Agnati LF, Diaz-Cabiale Z, Fuxe K (2010) Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem Biophys Res Commun 393(4):767–772. doi:10.1016/j.bbrc.2010.02.078

    Article  CAS  PubMed  Google Scholar 

  7. Branchek T, Smith KE, Walker MW (1998) Molecular biology and pharmacology of galanin receptors. Ann N Y Acad Sci 863:94–107

    Article  CAS  PubMed  Google Scholar 

  8. Lori A, Tang Y, O’Malley S, Picciotto MR, Wu R, Conneely KN, Cubells JF (2011) The galanin receptor 1 gene associates with tobacco craving in smokers seeking cessation treatment. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 36(7):1412–1420. doi:10.1038/npp.2011.25

    Article  CAS  Google Scholar 

  9. Gold AB, Wileyto EP, Lori A, Conti D, Cubells JF, Lerman C (2012) Pharmacogenetic association of the galanin receptor (GALR1) SNP rs2717162 with smoking cessation. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 37(7):1683–1688. doi:10.1038/npp.2012.13

    Article  CAS  Google Scholar 

  10. Mazarati A, Lu X (2005) Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides 39(3):277–280. doi:10.1016/j.npep.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Misawa K, Ueda Y, Kanazawa T, Misawa Y, Jang I, Brenner JC, Ogawa T, Takebayashi S, Grenman RA, Herman JG, Mineta H, Carey TE (2008) Epigenetic inactivation of galanin receptor 1 in head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res 14(23):7604–7613. doi:10.1158/1078-0432.CCR-07-4673

    Article  CAS  Google Scholar 

  12. Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF (2008) Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 58(2):415–452. doi:10.1016/j.brainresrev.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  13. Fuxe K, Ogren SO, Jansson A, Cintra A, Harfstrand A, Agnati LF (1988) Intraventricular injections of galanin reduces 5-HT metabolism in the ventral limbic cortex, the hippocampal formation and the fronto-parietal cortex of the male rat. Acta Physiol Scand 133(4):579–581. doi:10.1111/j.1748-1716.1988.tb08444.x

    Article  CAS  PubMed  Google Scholar 

  14. Nowak G, Sowa-Kucma M, Szewczyk B, Poleszak E, Pilc A (2010) Zinc and magnesium interaction with glutamate system in depression. Pharmacol Rep 62:23–38

    Article  Google Scholar 

  15. Siwek M, Dudek D, Paul IA, Sowa-Kucma M, Zieba A, Popik P, Pilc A, Nowak G (2009) Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord 118(1–3):187–195. doi:10.1016/j.jad.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  16. Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55(6):1143–1147

    CAS  PubMed  Google Scholar 

  17. Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach LO, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148(1):13–20. doi:10.1210/en.2006-0933

    Article  CAS  PubMed  Google Scholar 

  18. Mlyniec K, Budziszewska B, Reczynski W, Sowa-Kucma M, Nowak G (2013) The role of the GPR39 receptor in zinc deficient-animal model of depression. Behav Brain Res 238:30–35. doi:10.1016/j.bbr.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  19. Toledo D, Ramon E, Aguila M, Cordomi A, Perez JJ, Mendes HF, Cheetham ME, Garriga P (2011) Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin. J Biol Chem 286(46):39993–40001. doi:10.1074/jbc.M110.201517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Srinivasan S, Je SH, Back S, Barin G, Buyukcakir O, Guliyev R, Jung Y, Coskun A (2014) Ordered supramolecular gels based on graphene oxide and tetracationic cyclophanes. Adv Mater 26(17):2725–2729. doi:10.1002/Adma.201304334

    Article  CAS  PubMed  Google Scholar 

  21. Komolov KE, Aguila M, Toledo D, Manyosa J, Garriga P, Koch KW (2010) On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy. Anal Bioanal Chem 397(7):2967–2976. doi:10.1007/s00216-010-3876-4

    Article  CAS  PubMed  Google Scholar 

  22. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  23. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. doi:10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  24. Cordomi A, Perez JJ (2007) Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. J Phys Chem B 111(25):7052–7063. doi:10.1021/jp0707788

    Article  CAS  PubMed  Google Scholar 

  25. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. doi:10.1002/jcc.20291

    Article  Google Scholar 

  26. Eftink MR (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J 66(2 Pt 1):482–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gillison SL, Sharp GW (1994) ADP ribosylation by cholera toxin identifies three G-proteins that are activated by the galanin receptor. Studies with RINm5F cell membranes. Diabetes 43(1):24–32

    Article  CAS  PubMed  Google Scholar 

  28. Talbot JN, Jutkiewicz EM, Graves SM, Clemans CF, Nicol MR, Mortensen RM, Huang X, Neubig RR, Traynor JR (2010) RGS inhibition at G(alpha)i2 selectively potentiates 5-HT1A-mediated antidepressant effects. Proc Natl Acad Sci U S A 107(24):11086–11091. doi:10.1073/pnas.1000003107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274(5288):768–770

    Article  CAS  PubMed  Google Scholar 

  30. Barrondo S, Salles J (2009) Allosteric modulation of 5-HT(1A) receptors by zinc: binding studies. Neuropharmacology 56(2):455–462. doi:10.1016/j.neuropharm.2008.09.018

    Article  CAS  PubMed  Google Scholar 

  31. Tena-Campos M, Ramon E, Rivera D, Borroto-Escuela DO, Romero-Fernandez W, Fuxe K, Garriga P (2014) G-protein-coupled receptors oligomerization: emerging signaling units and new opportunities for drug design. Curr Protein Pept Sci 15(7):648–658

    Article  CAS  PubMed  Google Scholar 

  32. Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol Off Organ Int Soc Environ Toxicol Cancer 25(3):597–610

    Article  CAS  Google Scholar 

  33. Wong JP, Reboul E, Molday RS, Kast J (2009) A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins. J Proteome Res 8(5):2388–2396. doi:10.1021/pr801008c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corin K, Baaske P, Geissler S, Wienken CJ, Duhr S, Braun D, Zhang S (2011) Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Sci Rep 1:172. doi:10.1038/srep00172

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fay JF, Farrens DL (2012) A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569. J Biol Chem 287(40):33873–33882. doi:10.1074/jbc.M112.352328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T, McLean CA, Kok WM, Hutton CA, Fodero-Tavoletti M, Masters CL, Villemagne VL, Barnham KJ (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of beta-amyloid in human brain samples. Acta Neuropathol 125(4):549–564. doi:10.1007/s00401-013-1083-z

    Article  CAS  PubMed  Google Scholar 

  37. Lin S, Gether U, Kobilka BK (1996) Ligand stabilization of the beta 2 adrenergic receptor: effect of DTT on receptor conformation monitored by circular dichroism and fluorescence spectroscopy. Biochemistry 35(46):14445–14451. doi:10.1021/bi961619+

    Article  CAS  PubMed  Google Scholar 

  38. Leonard P, Hearty S, O’Kennedy R (2011) Measuring protein-protein interactions using Biacore. Methods Mol Biol 681:403–418. doi:10.1007/978-1-60761-913-0_22

    Article  CAS  PubMed  Google Scholar 

  39. Locatelli-Hoops S, Yeliseev AA, Gawrisch K, Gorshkova I (2013) Surface plasmon resonance applied to G protein-coupled receptors. Biomed Spectrosc Imaging 2(3):155–181. doi:10.3233/BSI-130045

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Komolov KE, Senin II, Philippov PP, Koch KW (2006) Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system. Anal Chem 78(4):1228–1234. doi:10.1021/ac051629t

    Article  CAS  PubMed  Google Scholar 

  41. Prasad AS (2014) Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol Organ Soc Miner Trace Elem. doi:10.1016/j.jtemb.2014.09.002

    Google Scholar 

  42. Jurowski K, Szewczyk B, Nowak G, Piekoszewski W (2014) Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J Biol Inorg Chem JBIC Publ Soc Biol Inorg Chem 19(7):1069–1079. doi:10.1007/s00775-014-1139-0

    Article  CAS  Google Scholar 

  43. del Valle LJ, Ramon E, Canavate X, Dias P, Garriga P (2003) Zinc-induced decrease of the thermal stability and regeneration of rhodopsin. J Biol Chem 278(7):4719–4724. doi:10.1074/jbc.M210760200

    Article  PubMed  Google Scholar 

  44. Muller A, Kleinau G, Piechowski CL, Muller TD, Finan B, Pratzka J, Gruters A, Krude H, Tschop M, Biebermann H (2013) G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS One 8(1):e53347. doi:10.1371/journal.pone.0053347

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH, Koseki H, Hirano T (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One 6(3):e18059. doi:10.1371/journal.pone.0018059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Popovics P, Stewart AJ (2011) GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol Life Sci 68(1):85–95. doi:10.1007/s00018-010-0517-1

    Article  CAS  PubMed  Google Scholar 

  47. Swardfager W, Herrmann N, Mazereeuw G, Goldberger K, Harimoto T, Lanctot KL (2013) Zinc in depression: a meta-analysis. Biol Psychiatry 74(12):872–878. doi:10.1016/j.biopsych.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  48. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326. doi:10.1038/nature10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang J, Chen S, Zhang JJ, Huang XY (2013) Crystal structure of oligomeric beta1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20(4):419–425. doi:10.1038/nsmb.2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dasiel Borroto-Escuela for providing pECFP-5-HT1A and pEYFP-GalR1 constructs. This work has been supported by grants from Fundació la Marató de TV3 (090131-01) and AGAUR (2009 SGR 1402) to PG. MT is the recipient of a predoctoral fellowship FPI-UPC from Universitat Politècnica de Catalunya.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Garriga.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tena-Campos, M., Ramon, E., Lupala, C.S. et al. Zinc Is Involved in Depression by Modulating G Protein-Coupled Receptor Heterodimerization. Mol Neurobiol 53, 2003–2015 (2016). https://doi.org/10.1007/s12035-015-9153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9153-y

Keywords

Navigation