Skip to main content

Class A GPCR: Serotonin Receptors

  • Chapter
  • First Online:
G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

  • 1331 Accesses

Abstract

Hundreds of studies have reported that G protein-coupled receptors self-associate to form dimers or oligomers. Yet, this topic remains controversial. This chapter reviews the current literature related to the structure and function of 5-HT receptor dimers/oligomers in recombinant cells and in native tissues. Studies designed to examine the functional significance of 5-HT receptor dimer/oligomer formation are evaluated and discussed. Emphasis is placed on the methods employed, the dimer interface, oligomer size, mechanism of G protein activation, and analysis of bivalent ligands as potential therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

serotonin

AA:

arachidonic acid

BiFC:

bimolecular fluorescence complementation

BRET:

bioluminescence resonance energy transfer

Co-IP:

co-immunoprecipiation

FCS:

fluorescence correlation spectroscopy

FISH:

fluorescent in situ hybridization

FRET:

fluorescence resonance energytransfer

GPCR:

G protein-coupled receptor

IP:

inositol phosphate

PLA:

proximity ligation assay

SpIDA:

spatial intensity distribution ananlysis

TCSPC:

time correlated single photon counting

References

  1. Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195:198–213.

    Article  CAS  PubMed  Google Scholar 

  2. Pedigo NW, Yamamura HI, Nelson DL. Discrimination of multiple [H-3]5-hydroxytryptamine binding-sites by the neuroleptic spiperone in rat-brain. J Neurochem. 1981;36:220–6.

    Article  CAS  PubMed  Google Scholar 

  3. Meltzer HY, Sumiyoshi T. Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res. 2008;195:98–102.

    Article  CAS  PubMed  Google Scholar 

  4. Albert PR, Zhou QY, Vantol HHM, Bunzow JR, Civelli O. Cloning, functional expression, and messenger-RNA tissue distribution of the rat 5-hydroxytryptamine-1a receptor gene. J Biol Chem. 1990;265:5825–32.

    CAS  PubMed  Google Scholar 

  5. Garcia-Garcia A, Newman-Tancredi A, Leonardo ED. 5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology. 2014;231:623–6.

    Article  CAS  PubMed  Google Scholar 

  6. Naumenko VS, Popova NK, Lacivita E, Leopoldo M, Ponimaskin EG. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci Ther. 2014;20:582–90.

    Article  CAS  PubMed  Google Scholar 

  7. Salim K, Fenton T, Bacha J, Urien-Rodriguez H, Bonnert T, Skynner HA, Watts E, Kerby J, Heald A, Beer M, McAllister G, Guest PC. Oligomerization of G-protein-coupled receptors shown by selective co-immunoprecipitation. J Biol Chem. 2002;277:15482–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kobe F, Renner U, Woehler A, Wlodarczyk J, Papusheva E, Bao G, Zeug A, Richter DW, Neher E, Ponimaskin E. Stimulation- and palmitoylation-dependent changes in oligomeric conformation of serotonin 5-HT1A receptors. Biochim Biophys Acta. 2008;1783:1503–16.

    Article  CAS  PubMed  Google Scholar 

  9. Łukasiewicz S, Błasiak E, Faron-Górecka A, Polit A, Tworzydło M, Górecki A, Wasylewski Z, Dziedzicka-Wasylewska M. Fluorescence studies of homooligomerization of adenosine A2A and serotonin 5-HT1A receptors reveal the specificity of receptor interactions in the plasma membrane. Pharmacol Rep. 2007;59:379–92.

    PubMed  Google Scholar 

  10. Woehler A, Wlodarczyk J, Ponimaskin EG. Specific oligomerization of the 5-HT1A receptor in the plasma membrane. Glycoconj J. 2009;26:749–56.

    Article  CAS  PubMed  Google Scholar 

  11. Gorinski N, Kowalsman N, Renner U, Wirth A, Reinartz MT, Seifert R, Zeug A, Ponimaskin E, Niv MY. Computational and experimental analysis of the transmembrane domain 4/5 dimerization interface of the serotonin 5-HT(1A) receptor. Mol Pharmacol. 2012;82:448–63.

    Article  CAS  PubMed  Google Scholar 

  12. Renner U, Zeug A, Woehler A, Niebert M, Dityatev A, Dityateva G, Gorinski N, Guseva D, Abdel-Galil D, Fröhlich M, Döring F, Wischmeyer E, Richter DW, Neher E, Ponimaskin EG. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signaling and trafficking. J Cell Sci. 2012;125:2486–99.

    Article  CAS  PubMed  Google Scholar 

  13. Ganguly S, Clayton AH, Chattopadhyay A. Organization of higher-order oligomers of the serotonin1(A) receptor explored utilizing homo-FRET in live cells. Biophys J. 2011;100:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Oligomerization of the serotonin(1A) receptor in live cells: a time-resolved fluorescence anisotropy approach. J Phys Chem. 2011;115:11439–47.

    Article  CAS  Google Scholar 

  15. Chan FT, Kaminski CF, Kaminski Schierle GS. HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells. ChemPhysChem. 2011;12:500–9.

    Article  CAS  PubMed  Google Scholar 

  16. Zeug A, Woehler A, Neher E, Ponimaskin EG. Quantitative intensity-based FRET approaches – a comparative snapshot. Biophys J. 2012;103:1821–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boschert U, Amara DA, Segu L, Hen R. The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience. 2014;58:167–82.

    Article  Google Scholar 

  18. Schlicker E, Fink K, Molderings GJ, Price GW, Middlemiss DN, Zentner J. Effects of SB 216641 and BRL 15572 (selective h5-HT1B and h5-HT(1D)receptor antagonists, respectively) on guinea-pig and human 5-HT auto- and hetero-receptors. Br J Pharmacol. 1997;120:143.

    Google Scholar 

  19. Sari Y. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev. 2004;28:565–82.

    Article  CAS  PubMed  Google Scholar 

  20. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science. 1994;265:1875–8.

    Article  CAS  PubMed  Google Scholar 

  21. Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, Le Dantec Y, David DJ, Gardier AM, Blanco C, Hen R, Ahmari SE. Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron. 2015;86:813–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pittenger C, Adams TG, Gallezot JD, Crowley MJ, Nabulsi N, James Ropchan, Gao H, Kichuk SA, Simpson R, Billingslea E, Hannestad J, Bloch M, Mayes L, Bhagwagar Z, Carson RE. OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1b receptor binding. J Affect Disord. 2016; 196:87–96.

    Google Scholar 

  23. Hamblin MW, McGuffin RW, Metcalf MA, Dorsa DM, Merchant KM. Distinct 5-HT1B and 5-HT1D serotonin receptors in rat: structural and pharmacological comparison of the two cloned receptors. Mol Cell Neurosci. 1992;3:578–87.

    Article  CAS  PubMed  Google Scholar 

  24. Xie Z, Lee SP, O’Dowd BF, George SR. Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett. 1999;456:63–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC. Structural features for functional selectivity at serotonin receptors. Science. 2013;340:615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE. Structural basis for molecular recognition at serotonin receptors. Science. 2013;340:610–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez M, Jorand-Lebrun C, Pauwels PJ, Pallard I, Halazy S. Dimers of 5HT1 ligands preferentially bind to 5HT1B/1D receptor subtypes. Bioorg Med Chem Lett. 1998;8:1407–12.

    Article  CAS  PubMed  Google Scholar 

  28. Dupuis DS, Perez M, Halazy S, Colpaert FC, Pauwels PJ. Magnitude of 5-HT1B and 5-HT1A receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated [35S]GTPgammaS binding responses. Brain Res Mol Brain Res. 1999;67:107–23.

    Article  CAS  PubMed  Google Scholar 

  29. Perez M, Pauwels PJ, Fourrier C, Chopin P, Valentin JP, John GW, Marien M, Halazy S. Dimerization of sumatriptan as an efficient way to design a potent, centrally and orally active 5-HT1B agonist. Bioorg Med Chem Lett. 1998;8:675–80.

    Article  CAS  PubMed  Google Scholar 

  30. Choi SK, Green D, Ho A, Klein U, Marquess D, Taylor R, Turner SD. Designing selective, high affinity ligands of 5-HT1D receptor by covalent dimerization of 5-HT1F ligands derived from 4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide. J Med Chem. 2008;51:3609–16.

    Article  CAS  PubMed  Google Scholar 

  31. Leonhardt S, Herrick-Davis K, Titeler M. Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: interaction with a GTP-binding protein. J Neurochem. 1989;53:465–71.

    Article  CAS  PubMed  Google Scholar 

  32. McAllister G, Charlesworth A, Snodin C, Beer MS, Noble AJ, Middlemiss DN, Iversen LL, Whiting P. Molecular cloning of a serotonin receptor from human brain (5HT1E): a fifth 5HT1-like subtype. PNAS. 1992;89:5517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zgombick JM, Schechter LE, Macchi M, Hartig PR, Branchek TA, Weinshank RL. Human gene S31 encodes the pharmacologically defined serotonin 5-hydroxytryptamine1E receptor. Mol Pharmacol. 1992;42:180–5.

    CAS  PubMed  Google Scholar 

  34. Bai F, Yin T, Johnstone EM, Su C, Varga G, Little SP, Nelson DL. Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor. Eur J Pharmacol. 2004;484:127–39.

    Article  CAS  PubMed  Google Scholar 

  35. Klein MT, Teitler M. Guinea pig hippocampal 5-HT(1E) receptors: a tool for selective drug development. J Neurochem. 2009;109:268–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klein MT, Teitler M. Distribution of 5-ht(1E) receptors in the mammalian brain and cerebral vasculature: an immunohistochemical and pharmacological study. Br J Pharmacol. 2012;166:1290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adham N, Bard JA, Zgombick JM, Durkin MM, Kucharewicz S, Weinshank RL, Branchek TA. Cloning and characterization of the guinea pig 5-HT1F receptor subtype: a comparison of the pharmacological profile to the human species homolog. Neuropharmacology. 1997;36:569–76.

    Article  CAS  PubMed  Google Scholar 

  38. Lucaites VL, Krushinski JH, Schaus JM, Audia JE, Nelson DL. [3H]LY334370, a novel radioligand for the 5-HT1F receptor. II. Autoradiographic localization in rat, guinea pig, monkey and human brain. Naunyn Arch Pharmacol. 2005;371:178–84.

    Article  CAS  Google Scholar 

  39. Zhang D, Blanco MJ, Ying BP, Kohlman D, Liang SX, Victor F, Chen Q, Krushinski J, Filla SA, Hudziak KJ, Mathes BM, Cohen MP, Zacherl D, Nelson DL, Wainscott DB, Nutter SE, Gough WH, Schaus JM, Xu YC. Discovery of selective N-[3-(1-methyl-piperidine-4-carbonyl)-phenyl]-benzamide-based 5-HT1 F receptor agonists: evolution from bicyclic to monocyclic cores. Bioorg Med Chem Lett. 2015;25:4337–41.

    Article  CAS  PubMed  Google Scholar 

  40. Nelson DL, Phebus LA, Johnson KW, Wainscott DB, Cohen ML, Calligaro DO, Xu YC. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia. 2010;30:1159–69.

    Article  PubMed  Google Scholar 

  41. Reuter U, Israel H, Neeb L. The pharmacological profile and clinical prospects of the oral 5-HT1F receptor agonist lasmiditan in the acute treatment of migraine. Ther Adv Neurol Disord. 2015;8:46–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pazos A, Cortes R, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 1985;346:231–49.

    Article  CAS  PubMed  Google Scholar 

  43. Pazos A, Probst A, Palacios JM. Serotonin receptors in the human brain-IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience. 1987;21:123–39.

    Article  CAS  PubMed  Google Scholar 

  44. Mengod G, Pompeiano M, Palacios JM. Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Res. 1990;524:139–43.

    Article  CAS  PubMed  Google Scholar 

  45. Willins D, Deutch A, Roth B. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse. 1997;27:79–82.

    Article  CAS  PubMed  Google Scholar 

  46. Doherty MD, Pickel VM. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res. 2000;864:176–85.

    Article  CAS  PubMed  Google Scholar 

  47. Nocjar C, Roth BL, Pehek EA. Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience. 2002;111:163–76.

    Article  CAS  PubMed  Google Scholar 

  48. Bombardi C. Neuronal localization of 5-HT2A receptor immunoreactivity in the rat hippocampal region. Brain Res Bull. 2012;87:259–73.

    Article  CAS  PubMed  Google Scholar 

  49. Bombardi C. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex. Front Pharmacol. 2014;5:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L. Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol. 1999;409:187–209.

    Article  PubMed  Google Scholar 

  51. Xu T, Pandey SC. Cellular localization of serotonin(2A) (5HT(2A)) receptors in the rat brain. Brain Res Bull. 2000;51:499–505.

    Article  CAS  PubMed  Google Scholar 

  52. Miner LA, Backstrom JR, Sanders-Bush E, Sesack SR. Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience. 2003;116:107–17.

    Article  CAS  PubMed  Google Scholar 

  53. Di Giovanni G. Serotonin in the pathophysiology and treatment of CNS disorders. Exp Brain Res. 2013;230:371–3.

    Article  PubMed  Google Scholar 

  54. Nocjar C, Alex KD, Sonneborn A, Abbas A, Roth BL, Pehek EA. Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience. 2015;297:22–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Titeler M, Lyon RA, Glennon RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site-of-action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology. 1988;94:213–6.

    Article  CAS  PubMed  Google Scholar 

  56. Roth BL, Ciaranello RD, Meltzer HY. Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther. 1992;260:1361–5.

    CAS  PubMed  Google Scholar 

  57. Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. PNAS. 1998;95:735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guiard BP, Di Giovanni G. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front Pharmacol. 2015;6:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225.

    PubMed  PubMed Central  Google Scholar 

  60. Cunningham KA, Anastasio NC, Fox RG, Stutz SJ, Bubar JJ, Swinford SE, Watson CS, Gilbertson SR, Rice KC, Rosenzweig-Lipson S, Moeller FG. Synergism between a serotonin 5-HT2A receptor (5-HT2AR) antagonist and 5-HT2CR agonist suggests new pharmacotherapeutics for cocaine addiction. ACS Chem Neurosci. 2013;4:110–21.

    Article  CAS  PubMed  Google Scholar 

  61. Ullmer C, Schmuck K, Kalkman HO, Lübbert H. Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett. 1995;370:215–21.

    Article  CAS  PubMed  Google Scholar 

  62. De Clerck F, Xhonneux B, Leysen J, Janssen PA. Evidence for functional 5-HT2 receptor sites on human blood platelets. Biochem Pharmacol. 1984;33:2807–11.

    Article  PubMed  Google Scholar 

  63. De Chaffoy de Courcelles D, Leysen JE, De Clerck F, Van Belle H, Janssen PA. Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J Biol Chem. 1985;260:7603–8.

    PubMed  Google Scholar 

  64. Hoyer D, Pazos A, Probst A, Palacios JM. Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res. 1986;376:97–107.

    Article  CAS  PubMed  Google Scholar 

  65. Waeber C, Palacios JM. Binding sites for 5-hydroxytryptamine-2 receptor agonists are predominantly located in striosomes in the human basal ganglia. Brain Res Mol Brain Res. 1994;24:199–209.

    Article  CAS  PubMed  Google Scholar 

  66. Lopez-Gimenez JF, Villazon M, Brea J, Loza MI, Palacios JM, Mengod G, Vilaro MT. Multiple conformations of native and recombinant human 5-hydroxytryptamine2A receptors are labeled by agonists and discriminated by antagonists. Mol Pharmacol. 2001;60:690–9.

    CAS  PubMed  Google Scholar 

  67. Brea J, Castro M, Giraldo J, López-Giménez JF, Padín JF, Quintián F, Cadavid MI, Vilaró MT, Mengod G, Berg KA, Clarke WP, Vilardaga JP, Milligan G, Loza MI. Evidence for distinct antagonist-revealed functional states of 5-hydroxytryptamine(2A) receptor homodimers. Mol Pharmacol. 2009;75:1380–91.

    Article  CAS  PubMed  Google Scholar 

  68. Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE. Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol. 2013;84:630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Łukasiewicz S, Polit A, Kędracka-Krok S, Wędzony K, Maćkowiak M, Dziedzicka-Wasylewska M. Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. Biochim Biophys Acta. 1803;2010:1347–58.

    Google Scholar 

  70. Łukasiewicz S, Faron-Górecka A, Kędracka-Krok S, Dziedzicka-Wasylewska M. Effect of clozapine on the dimerization of serotonin 5-HT(2A) receptor and its genetic variant 5-HT(2A)H425Y with dopamine D(2) receptor. Eur J Pharmacol. 2011;659:114–23.

    Article  PubMed  CAS  Google Scholar 

  71. Shan J, Khelashvili G, Mondal S, Mehler EL, Weinstein H. Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A) receptor determine its activation and membrane-driven oligomerization properties. PLoS Comput Biol. 2012;8(4):e1002473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bruno A, Beato C, Costantino G. Molecular dynamics simulations and docking studies on 3D models of the heterodimeric and homodimeric 5-HT(2A) receptor subtype. Future Med Chem. 2011;3:665–81.

    Article  CAS  PubMed  Google Scholar 

  73. Perez-Aguilar JM, Shan J, LeVine MV, Khelashvili G, Weinstein H. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc. 2014;136:16044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mondal S, Khelashvili G, Shan J, Andersen O, Weinstein H. Quantitative modeling of membrane deformations by multi-helical membrane proteins: application to G-protein coupled receptors. Biophys J. 2011;101:2092–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goforth RL, Chi AK, Greathouse DV, Providence LL, Koeppe RE, Andersen OS. Hydrophobic coupling of lipid bilayer energetics to channel function. J Gen Physiol. 2003;121:477–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Periole X, Huber T, Marrink SJ, Sakmar TP. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc. 2007;129:10126–32.

    Article  CAS  PubMed  Google Scholar 

  77. Guo W, Shi L, Filizola M, Weinstein H, Javitch JA. Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci U S A. 2005;102:17495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mancia F, Assur Z, Herman AG, Siegel R, Hendrickson WA. Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. EMBO Rep. 2008;9:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fung JJ, Deupi X, Pardo L, Yao XJ, Velez-Ruiz GA, DeVree BT, Sunahara RK, Kobilka BK. Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO J. 2009;28:3315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rosembaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, DeVree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK. Structure and function of an irreversible agonist- b2-adrenoceptor complex. Nature. 2011;469:236–40.

    Article  CAS  Google Scholar 

  81. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP. Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol. 1998;54:94–104.

    CAS  PubMed  Google Scholar 

  83. Kurrasch-Orbaugh DM, Watts VJ, Barker EL, Nichols DE. Serotonin 5-hydroxytryptamine 2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther. 2003;304:229–37.

    Article  CAS  PubMed  Google Scholar 

  84. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52.

    Article  PubMed  CAS  Google Scholar 

  85. Schmid CL, Raehal KM, Bohn LM. Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci U S A. 2008;105:1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raote I, Bhattacharyya S, Panicker MM. Functional selectivity in serotonin receptor 2A (5-HT2A) endocytosis, recycling, and phosphorylation. Mol Pharmacol. 2013;83:42–50.

    Article  CAS  PubMed  Google Scholar 

  87. Karaki S, Becamel C, Murat S, Mannoury la Cour C, Millan MJ, Prézeau L, Bockaert J, Marin P, Vandermoere F. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics. 2014;13:1273–85.

    Google Scholar 

  88. Teitler M, Klein MT. A new approach for studying GPCR dimers: drug-induced inactivation and reactivation to reveal GPCR dimer function in vitro, in primary culture, and in vivo. Pharmacol Ther. 2012;133:205–17.

    Article  CAS  PubMed  Google Scholar 

  89. Kren V, Eich E, Pertz HH. Pergolide, terguride and N,N′-spacer-linked oligomers of both interact with 5-HT2A receptors of rat tail artery. Physiol Res 2004;53:35–43.

    Google Scholar 

  90. Shashack MJ, Cunningham KA, Seitz PK, McGinnis A, Smith T, Watson CS, Gilbertson SR. Synthesis and evaluation of dimeric derivatives of 5-HT(2A) receptor (5-HT(2A)R) antagonist M-100907. ACS Chem Neurosci. 2011;2:640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Foguet M, Hoyer D, Pardo LA, Parekh A, Kluxen FW, Kalkman HO, Stühmer W, Lübbert H. Cloning and functional characterization of the rat stomachfundus serotonin receptor. EMBO J. 1992;11:3481–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kursar JD, Nelson DL, Wainscott DB, Cohen ML, Baez M. Molecular-cloning, functional expression, and pharmacological characterization of a novel serotonin receptor (5-hydroxytryptamine2f) from rat stomach fundus. Mol Pharmacol. 1992;42:549–57.

    CAS  PubMed  Google Scholar 

  93. Kursar JD, Nelson DL, Wainscott DB, Baez M. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Mol Pharmacol. 1994;46:227–34.

    CAS  PubMed  Google Scholar 

  94. Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, Sun JH, Link JR, Abbaszade I, Hollis JM, Largent BL, Hartig PR, Hollis GF, Meunier PC, Robichaud AJ, Robertson DW. Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol. 2000;57:75–81.

    CAS  PubMed  Google Scholar 

  95. Launay JM, Herve P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, Maroteaux L. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med. 2002;8:1129–35.

    Article  CAS  PubMed  Google Scholar 

  96. Nebigil CG, Choi DS, Dierich A, Hickel P, Le Meur M, Messaddeq N, Launay JM, Maroteaux L. Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci U S A. 2000;97:9508–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bonhaus DW, Bach C, Desouza A, Salazar FHR, Matsuoka BD, Zuppan P, Chan HW, Eglen RM. The pharmacology and distribution of human 5-hydroxytryptamine(2b) (5-Ht2b) receptor gene-products – comparison with 5-Ht2a and 5-Ht2c receptors. Br J Pharmacol. 1995;115:622–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duxon MS, Kennett GA, Lightowler S, Blackburn TP, Fone KCF. Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. Neuropharmacology. 1997;36:601–8.

    Article  CAS  PubMed  Google Scholar 

  99. Diaz SL, Doly S, Narboux-Nême N, Fernández S, Mazot P, Banas SM, Boutourlinsky K, Moutkine I, Belmer A, Roumier A, Maroteaux L. 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry. 2012;17:154–63.

    Article  CAS  PubMed  Google Scholar 

  100. Li B, Dong L, Wang B, Cai L, Jiang N, Peng L. Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res. 2012;37:2480–95.

    Article  CAS  PubMed  Google Scholar 

  101. Hertz L, Rothman DL, Li B, Peng L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci. 2015;9:25.

    PubMed  PubMed Central  Google Scholar 

  102. Pazos A, Hoyer D, Palacios JM. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol. 1984;106:539–46.

    Article  CAS  PubMed  Google Scholar 

  103. Yagaloff KA, Hartig PR. 125I-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells. J Neurosci. 1985;5:3178–83.

    CAS  PubMed  Google Scholar 

  104. Hoffman BJ, Mezey E. Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain. FEBS Lett. 1989;247:453–62.

    Article  CAS  PubMed  Google Scholar 

  105. Molineaux SM, Jessell TM, Axel R, Julius D. 5-HT1c receptor is a prominent serotonin receptor subtype in the central nervous system. Proc Natl Acad Sci U S A. 1989;86:6793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mengod G, Nguyen H, Le H, Waeber C, Lübbert H, Palacios JM. The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience. 1990;35:577–91.

    Article  CAS  PubMed  Google Scholar 

  107. Pompeiano M, Palacios JM, Mengod G. Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res. 1994;23:163–78.

    Article  CAS  PubMed  Google Scholar 

  108. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L. Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol. 1995;351:357–73.

    Article  CAS  PubMed  Google Scholar 

  109. Di Giovanni G, Di Matteo V, La Grutta V, Esposito E. m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience. 2001;103:111–6.

    Article  PubMed  Google Scholar 

  110. Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther. 2007;113:296–320.

    Article  CAS  PubMed  Google Scholar 

  111. Liu S, Bubar MJ, Lanfranco MF, Hillman GR, Cunningham KA. Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience. 2007;146:1677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bubar MJ, Stutz SJ, Cunningham KA. 5-HT2C receptors localize to dopamine and GABA neurons in the rat mesoaccumbens pathway. PLoS One. 2011;6(6):e20508. doi:10.1371/journal.pone.0020508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Di Giovanni G, Esposito E, Di Matteo V. The 5-HT2C receptor subtype controls central dopaminergic systems: evidence from Electrophysiological and Neurochemical studies. In: Di Giovanni G, Esposito E, Di Matteo V (eds) 5-HT2C receptors in the pathophysiology of CNS sisease. New York: Springer, 2011. P. 215–49.

    Google Scholar 

  114. Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther. 2016;157:125–62.

    Article  PubMed  CAS  Google Scholar 

  115. Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev. 2015;67:176–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sullivan LC, Clarke WP, Berg KA. Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des. 2015;21:3732–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Herrick-Davis K, Grinde E, Mazurkiewicz JE. Biochemical and biophysical characterization of serotonin 5-HT2C receptor homodimers on the plasma membrane of living cells. Biochemistry. 2004;43:13963–71.

    Article  CAS  PubMed  Google Scholar 

  118. Herrick-Davis K, Grinde E, Weaver BA. Serotonin 5-HT(2C) receptor homodimerization is not regulated by agonist or inverse agonist treatment. Eur J Pharmacol. 2007;568:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Herrick-Davis K, Grinde E, Lindsley T, Cowan A, Mazurkiewicz JE. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers. J Biol Chem. 2012;287:23604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Herrick-Davis K, Farrington D. 5-HT2C receptor dimerization. In: Di Giovanni G, Esposito E, Di Matteo V (eds) 5-HT2C receptors in the pathophysiology of CNS disease. Springer, New York; 2011. P. 129–56.

    Google Scholar 

  121. Herrick-Davis K, Grinde E, Niswender CM. Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J Neurochem. 1999;73:1711–7.

    Article  CAS  PubMed  Google Scholar 

  122. Werry TD, Loiacono R, Sexton PM, Christopoulos A. RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther. 2008;119:7–23.

    Article  CAS  PubMed  Google Scholar 

  123. Herrick-Davis K, Weaver BA, Grinde E, Mazurkiewicz JE. Serotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum: real-time visualization with confocal fluorescence resonance energy transfer. J Biol Chem. 2006;281:27109–16.

    Article  CAS  PubMed  Google Scholar 

  124. Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol. 2013;84:158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Elson EL. Fluorescence correlation spectroscopy: past, present, future. Biophys J. 2011;101:2855–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Herrick-Davis K, Mazurkiewicz JE. Fluorescence correlation spectroscopy and photon-counting histogram analysis of receptor-receptor interactions. Methods Cell Biol. 2013;117:181–96.

    Article  CAS  PubMed  Google Scholar 

  127. Chen Y, Wei LN, Müller JD. Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proc Natl Acad Sci. 2003;100:15492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ward RJ, Pediani JD, Godin AG, Milligan G. Regulation of oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor observed by spatial intensity distribution analysis. J Biol Chem. 2015;290:12844–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Herrick-Davis K, Grinde E, Lindsley T, Teitler M, Mancia F, Cowan A, Mazurkiewicz JE. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells. Mol Pharmacol. 2015;87:660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Häberlein H. Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry. 2004;43:6190–9.

    Article  CAS  PubMed  Google Scholar 

  131. Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol. 1988;34:880–7.

    CAS  PubMed  Google Scholar 

  132. Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT(4) receptors: history, molecular pharmacology and brain functions. Neuropharmacology. 2008;55:922–31.

    Article  CAS  PubMed  Google Scholar 

  133. Waeber C, Sebben M, Nieoullon A, Bockaert J, Dumuis. Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain. Neuropharmacology 1994;33:527–541.

    Google Scholar 

  134. Compan V, Daszuta A, Salin P, Sebben M, Bockaert J, Dumuis. Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus. Eur J Neurosci 1996;8:2591–2598.

    Google Scholar 

  135. Roychowdhury S, Haas H, Anderson EG. 5-HT1A and 5-HT4 receptor colocalization on hippocampal pyramidal cells. Neuropharmacology. 1994;33:551–7.

    Article  CAS  PubMed  Google Scholar 

  136. Vilaro MT, Cortes R, Mengod G. Serotonin 5-HT4 receptors and their mRNAs in rat and guinea pig brain: distribution and effects of neurotoxic lesions. J Comp Neurol. 2005;484:418–39.

    Article  CAS  PubMed  Google Scholar 

  137. Cai X, Flores-Hernandez J, Feng J, Yan Z. Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4) receptor-mediated signalling in rat prefrontal cortical pyramidal neurons. J Physiol. 2002;540:743–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bockaert J, Claeysen S, Bécamel C, Dumuis A, Marin P. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 2006;326:553–72.

    Article  CAS  PubMed  Google Scholar 

  139. Claeysen S, Bockaert J, Giannoni P. Serotonin: a new hope in alzheimer’s disease? ACS Chem Neurosci. 2015;6:940–3.

    Article  CAS  PubMed  Google Scholar 

  140. Berthouze M, Ayoub M, Russo O, Rivail L, Sicsic S, Fischmeister R, Berque-Bestel I, Jockers R, Lezoualc’h F. Constitutive dimerization of human serotonin 5-HT4 receptors in living cells. FEBS Lett. 2005;579:2973–80.

    Article  CAS  PubMed  Google Scholar 

  141. Pellissier LP, Barthet G, Gaven F, Cassier E, Trinquet E, Pin JP, Marin P, Dumuis A, Bockaert J, Banères JL, Claeysen S. G protein activation by serotonin type 4 receptor dimers: evidence that turning on two protomers is more efficient. J Biol Chem. 2011;286:9985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Berthouze M, Rivail L, Lucas A, Ayoub MA, Russo O, Sicsic S, Fischmeister R, Berque-Bestel I, Jockers R, Lezoualc’h F. Two transmembrane Cys residues are involved in 5-HT4 receptor dimerization. Biochem Biophys Res Commun. 2007;356:642–7.

    Article  CAS  PubMed  Google Scholar 

  143. Russo O, Berthouze M, Giner M, Soulier JL, Rivail L, Sicsic S, Lezoualc’h F, Jockers R, Berque-Bestel I. Synthesis of specific bivalent probes that functionally interact with 5-HT(4) receptor dimers. J Med Chem. 2007;50:4482–92.

    Article  CAS  PubMed  Google Scholar 

  144. Lezoualc’h F, Jockers R, Berque-Bestel I. Multivalent-based drug design applied to serotonin 5-HT(4) receptor oligomers. Curr Pharm Des. 2009;15:719–29. Review

    Article  PubMed  Google Scholar 

  145. Pasqualetti M, Ori M, Nardi I, Castagna M, Cassano GB, Marazziti D. Distribution of the 5-HT5A serotonin receptor mRNA in the human brain. Mol Brain Res. 1998;56:1–8.

    Article  CAS  PubMed  Google Scholar 

  146. Uberti MA, Hague C, Oller H, Minneman KP, Hall RA. Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J Pharmacol Exp Ther. 2005;313:16–23.

    Article  CAS  PubMed  Google Scholar 

  147. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature. 1998;396:674–9.

    Article  CAS  PubMed  Google Scholar 

  148. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998;396:683–7.

    Article  CAS  PubMed  Google Scholar 

  149. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature. 1998;396:679–82.

    Article  CAS  PubMed  Google Scholar 

  150. Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron. 2000;27:97–106.

    Article  CAS  PubMed  Google Scholar 

  151. Kohen R, Metcalf MA, Khan N, Druck T, Huebner K, Lachowicz JE, Meltzer HY, Sibley DR, Roth BL, Hamblin MW. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem. 1996;66:47–56.

    Article  CAS  PubMed  Google Scholar 

  152. Hirst WD, Minton JA, Bromidge SM, Moss SF, Latter AJ, Riley G, Routledge C, Middlemiss DN, Price GW. Characterization of [I-125]-SB-258585 binding to human recombinant and native 5-HT6 receptors in rat, pig and human brain tissue. Br J Pharmacol. 2000;130:1597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Roberts JC, Reavill C, East SZ, Harrison PJ, Patel S, Routledge C, Leslie RA. The distribution of 5-HT6 receptors in rat brain: an autoradiographic binding study using the radiolabelled 5-HT6 receptor antagonist [125I]SB-258585. Brain Res. 2002;934:49–57.

    Article  CAS  PubMed  Google Scholar 

  154. Wicke K, Haupt A, Bespalov A. Investigational drugs targeting 5-HT6 receptors for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs. 2015;24:1515–28.

    Article  CAS  PubMed  Google Scholar 

  155. Gellynck E, Heyninck K, Andressen KW, Haegeman G, Levy FO, Vanhoenacker P, Van Craenenbroeck K. The serotonin 5-HT7 receptors: two decades of research. Exp Brain Res. 2013;230:555–68.

    Article  CAS  PubMed  Google Scholar 

  156. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem. 1993;268:23422–6.

    CAS  PubMed  Google Scholar 

  157. Tuladhar BR, Ge L, Naylor RJ. 5-HT7 receptors mediate the inhibitory effect of 5-HT on peristalsis in the isolated guineapig ileum. Br J Pharmacol. 2003;138:1210–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Waeber C, Moskowitz MA. Autoradiographic visualisation of[3H] 5-carboxamidotryptamine binding sites in the guinea pig and rat brain. Eur J Pharmacol. 1995;283:31–46.

    Article  CAS  PubMed  Google Scholar 

  159. Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA. A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-HT7 receptor in rat brain. Br J Pharmacol. 1996;117:657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hirst WD, Price GW, Rattray M, Wilkin GP. Identification of 5-hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes. Br J Pharmacol. 1997;120:509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Neumaier JF, Sexton TJ, Yracheta J, Diaz AM, Brownfield M. Localization of 5-HT7 receptors in rat brain by immunocytochemistry, in situ hybridisation, and agonist stimulated cFos expression. J Chem Neuroanat. 2001;21:63–73.

    Article  CAS  PubMed  Google Scholar 

  162. Bonaventure P, Nepomuceno D, Hein L, Sutcliffe JG, Lovenberg T, Hedlund PB. Radioligand binding analysis of knockout mice reveals 5-hydroxytryptamine(7) receptor distribution and uncovers 8-hydroxy-2-(di-n-propylamino)tetralin interaction with α2-adrenergic receptors. Neuroscience. 2004;124:901–11.

    Article  CAS  PubMed  Google Scholar 

  163. Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron. 1993;11:449–58.

    Article  CAS  PubMed  Google Scholar 

  164. Guscott MR, Egan E, Cook GP, Stanton JA, Beer MS, Rosahl TW, Hartmann S, Kulagowski J, McAllister G, Fone KC, Hutson PH. The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor. Neuropharmacology. 2003;44:1031–7.

    Article  CAS  PubMed  Google Scholar 

  165. Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG. No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci U S A. 2003;100:1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Andreetta F, Carboni L, Grafton G, Jeggo R, Whyment AD, van den Top M, Hoyer D, Spanswick D, Barnes NM. Hippocampal 5-HT7 receptors signal phosphorylation of the GluA1 subunit to facilitate AMPA receptor mediated neurotransmission in vitro and in vivo. British J of Pharmacol. 2016;173:1438–51.

    Article  CAS  Google Scholar 

  167. Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ Jr, Shen Y, Meltzer HY, Sibley DR. Binding of the typical and atypical antipsychotic agents to 5-hydroxytryptamine6 and 5-hydroxytryptamine7 receptors. J Pharmacol Exp Ther. 1994;268:1403–10.

    CAS  PubMed  Google Scholar 

  168. Fountoulakis KN, Gazouli M, Kelsoe J, Akiskal H. The pharmacodynamic properties of lurasidone and their role in its antidepressant efficacy in bipolar disorder. Eur Neuropsychopharmacol. 2015;25:335–42.

    Article  CAS  PubMed  Google Scholar 

  169. Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43–57.

    Article  CAS  PubMed  Google Scholar 

  170. Teitler M, Toohey N, Knight JA, Klein MT, Smith C. Clozapine and other competitive antagonists reactivate risperidone-inactivated h5-HT7 receptors: radioligand binding and functional evidence for GPCR homodimer protomer interactions. Psychopharmacology (Berl). 2010;212:687–97.

    Google Scholar 

  171. Knight JA, Smith C, Toohey N, Klein MT, Teitler M. Pharmacological analysis of the novel, rapid, and potent inactivation of the human 5-Hydroxytryptamine7 receptor by risperidone, 9-OH-Risperidone, and other inactivating antagonists. Mol Pharmacol. 2009;75:374–80.

    Article  CAS  PubMed  Google Scholar 

  172. Smith C, Toohey N, Knight JA, Klein MT, Teitler M. Risperidone-induced inactivation and clozapine-induced reactivation of rat cortical astrocyte 5-hydroxytryptamine7 receptors: evidence for in situ G protein-coupled receptor homodimer protomer cross-talk. Mol Pharmacol. 2011;79:318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Herrick-Davis K. Functional significance of serotonin receptor dimerization. Exp Brain Res. 2013;230:375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev. 2014;66:413–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem. 2007;282:14875–81.

    Article  CAS  PubMed  Google Scholar 

  176. Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci. 2007;104:7682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem. 2003;278:21655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jastrzebska B, Ringler P, Palczewski K, Engel A. The rhodopsin-transducin complex houses two distinct rhodopsin molecules. J Struct Biol. 2013;182:164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Banères JL, Parello J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J Mol Biol. 2003;329:815–29.

    Article  PubMed  CAS  Google Scholar 

  180. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol. 2009;5:688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol. 2010;6:587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hasbi A, O’Dowd BF, George SR. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain. 2011;4:26.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Berg KA, Rowan MP, Gupta A, Sanchez TA, Silva M, Gomes I, McGuire BA, Portoghese PS, Hargreaves KM, Devi LA, Clarke WP. Allosteric interactions between δ and κ opioid receptors in peripheral sensory neurons. Mol Pharmacol. 2012;81:264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rivero-Müller A, Chou YY, Ji I, Lajic S, Hanyaloglu AC, Jonas K, Rahman N, Ji TH, Huhtaniemi I. Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci. 2010;107:2319–24.

    Article  PubMed  PubMed Central  Google Scholar 

  185. González S, Rangel-Barajas C, Peper M, Lorenzo R, Moreno E, Ciruela F, Borycz J, Ortiz J, Lluís C, Franco R, McCormick PJ, Volkow ND, Rubinstein M, Floran B, Ferré S. Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Mol Psychiatry. 2012;17:650–62.

    Article  PubMed  CAS  Google Scholar 

  186. Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci U S A. 2005;102:9050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Fujita W, Gomes I, Devi LA. Mu-Delta opioid receptor heteromers: New pharmacology and novel therapeutic possibilities. Br J Pharmacol. 2015;172:375–87.

    Article  CAS  PubMed  Google Scholar 

  188. Herrick-Davis K, Grinde E, Harrigan TJ, Mazurkiewicz JE. Inhibition of serotonin 5-hydroxytryptamine2c receptor function through heterodimerization: receptor dimers bind two molecules of ligand and one G-protein. J Biol Chem. 2005;280:40144–51.

    Article  CAS  PubMed  Google Scholar 

  189. Zoenen M, Urizar E, Swillens S, Vassart G, Costagliola S. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers. Nat Commun. 2012;3:1007–17.

    Article  PubMed  CAS  Google Scholar 

  190. Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol. 1999;55:910–20.

    CAS  PubMed  Google Scholar 

  191. Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bünemann M. Analysis of receptor oligomerization by FRAP microscopy. Nat Methods. 2009;6:225–30.

    Article  CAS  PubMed  Google Scholar 

  192. Goin JC, Nathanson NM. Quantitative analysis of muscarinic acetylcholine receptor homo- and heterodimerization in live cells: regulation of receptor down-regulation by heterodimerization. J Biol Chem. 2006;281:5416–25.

    Article  CAS  PubMed  Google Scholar 

  193. Alvarez-Curto E, Ward RJ, Pediani JD, Milligan G. Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogeneous time-resolved FRET. J Biol Chem. 2010;285:23318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 2008;27:2293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. O’Dowd BF, Ji X, Alijaniaram M, Nguyen T, George SR. Separation and reformation of cell surface dopamine receptor oligomers visualized in cells. Eur J Pharmacol. 2011;658:74–83.

    Article  PubMed  CAS  Google Scholar 

  196. Pin JP, Neubig R, Bouvier M, Devi L, Filizola M, Javitch JA, Lohse MJ, Milligan G, Palczewski K, Parmentier M, Spedding M. International union of basic and clinical pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev. 2007;59:5–13.

    Article  CAS  PubMed  Google Scholar 

  197. Borroto-Escuela DO, Narvaez M, Pérez-Alea M, Tarakanov AO, Jiménez-Beristain A, Mudó G, Agnati LF, Ciruela F, Belluardo N, Fuxe K. FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochem Biophys Res Commun. 2015;456:489–93.

    Article  CAS  PubMed  Google Scholar 

  198. Borroto-Escuela DO, Corrales F, Narvaez M, Oflijan J, Agnati LF, Palkovits M, Fuxe K. Dynamic modulation of FGFR1-5-HT1A heteroreceptor complexes. Agonist treatment enhances participation of FGFR1 and 5-HT1A homodimers and recruitment of β-arrestin2. Biochem Biophys Res Commun. 2013;441:387–92.

    Article  CAS  PubMed  Google Scholar 

  199. Borroto-Escuela DO, Pérez-Alea M, Narvaez M, Tarakanov AO, Mudó G, Jiménez-Beristain A, Agnati LF, Ciruela F, Belluardo N, Fuxe K. Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression. Biochem Biophys Res Commun. 2015;463:180–6.

    Article  CAS  PubMed  Google Scholar 

  200. Anastasio NC, Stutz SJ, Fink LH, Swinford-Jackson SE, Sears RM, DiLeone RJ, Rice KC, Moeller FG, Cunningham KA. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR): 5-HT2CR imbalance in medial prefrontal cortex associates with motor impulsivity. ACS Chem Neurosci. 2015;6:1248–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pockros LA, Pentkowski NS, Conway SM, Ullman TE, Zwick KR, Neisewander JL. 5-HT(2A) receptor blockade and 5-HT(2C) receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen. Synapse. 2012;66:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Viñals X, Moreno E, Lanfumey L, Cordomí A, Pastor A, de La Torre R, Gasperini P, Navarro G, Howell LA, Pardo L, Lluís C, Canela EI, McCormick PJ, Maldonado R, Robledo P. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol. 2015;13(7):e1002194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun. 2014;443:278–84.

    Article  CAS  PubMed  Google Scholar 

  204. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF, Fuxe K. Dopamine D2 and 5-hydroxytryptamine 5-HT(2A) receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun. 2010;401:605–10.

    Article  CAS  PubMed  Google Scholar 

  205. Albizu L, Holloway T, González-Maeso J, Sealfon SC. Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology. 2011;61:770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452:93–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett. 2011;493:76–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuéllar F, Mocci G, Seto J, Callado LF, Neve RL, Milligan G, Sealfon SC, López-Giménez JF, Meana JJ, Benson DL, González-Maeso J. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A·mGlu2) receptor heteromerization and its psychoactive behavioral function. J Biol Chem. 2012;287:44301–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, MacKerell AD Jr, Brezina V, Sealfon SC, Filizola M, González-Maeso J, Logothetis DE. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell. 2011;147:1011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, Ben-Ezra A, Voloudakis G, Fakira AK, Baki L, Ge Y, Georgakopoulos A, Morón JA, Milligan G, López-Giménez JF, Robakis NK, Logothetis DE, Meana JJ, González-Maeso J. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal. 2016;9(410):ra5.

    Google Scholar 

  211. Delille HK, Becker JM, Burkhardt S, Bleher B, Terstappen GC, Schmidt M, Meyer AH, Unger L, Marek GJ, Mezler M. Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology. 2012;62:2184–91.

    Article  CAS  PubMed  Google Scholar 

  212. Delille HK, Mezler M, Marek GJ. The two faces of the pharmacological interaction of mGlu2 and 5-HT2A: relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology. 2013;70:296–305.

    Article  CAS  PubMed  Google Scholar 

  213. Newman-Tancredi A, Kleven MS. Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1Areceptor properties. Psychopharmacology. 2011;216:451–73.

    Article  CAS  PubMed  Google Scholar 

  214. Łukasiewicz S, Błasiak E, Szafran-Pilch K, Dziedzicka-Wasylewska M. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics – in vitro studies. J Neurochem. 2016;137:549–60.

    Article  PubMed  CAS  Google Scholar 

  215. Millón C, Flores-Burgess A, Narváez M, Borroto-Escuela DO, Santín L, Gago B, Narváez JA, Fuxe K, Díaz-Cabiale Z. Galanin (1–15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct Funct. 2016;20. [Epub ahead of print]

    Google Scholar 

  216. Fuxe K, VonEuler G, Agnati LF, Ogren SO. Galanin selectively modulates 5- hydroxytryptamine1A receptors in the rat ventral limbic cortex. Neurosci Lett. 1988;85:163–7.

    Article  CAS  PubMed  Google Scholar 

  217. Hedlund P, VonEuler G, Fuxe K. Activation of 5-hydroxytryptamine1A receptors increases the affinity of galanin receptors in di and telencephalic area sof the rat. BrainRes.1991;560:251–59.

    Google Scholar 

  218. Hedlund P, Finnman UB, Yanaihara N, Fuxe K. Galanin (1–15), but not galanin-(1–29), modulates 5-HT1A receptors in the dorsal hippocampus of the rat brain: possible existence of galanin receptor subtypes. Brain Res. 1994;634:163–7.

    Article  CAS  PubMed  Google Scholar 

  219. Diaz-Cabiale Z, Narvaez JA, Finnman UB, Bellido I, Ogren SO, Fuxe K. Galanin-(1–16) modulates 5-HT1A receptors in the ventral limbic cortex of the rat. Neuroreport. 2000;11:515–9.

    Article  CAS  PubMed  Google Scholar 

  220. Razani H, Diaz-Cabiale Z, Fuxe K, Ogren SO. Intraventricular galanin produces a time- dependent modulation of 5-HT1A receptors in the dorsal raphe of the rat. Neuroreport. 2000;11:3943–8.

    Article  CAS  PubMed  Google Scholar 

  221. Borroto-Escuela DO, Narvaez M, Marcellino D, Parrado C, Narvaez JA, Tarakanov AO, Agnati LF, Díaz-Cabiale Z, Fuxe K. Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem Biophys Res Commun. 2010;393:767–72.

    Article  CAS  PubMed  Google Scholar 

  222. Tena-Campos M, Ramon E, Borroto-Escuela DO, Fuxe K, Garriga P. The zinc binding receptor GPR39 interacts with 5-HT1A and GalR1 to form dynamic heteroreceptor complexes with signaling diversity. Biochim Biophys Acta. 1852;2015:2585–92.

    Google Scholar 

  223. Tena-Campos M, Ramon E, Lupala CS, Pérez JJ, Koch KW, Garriga P. Zinc is involved in depression by modulating G protein-coupled receptor heterodimerization. Mol Neurobiol. 2016;53:2003–15.

    Article  CAS  PubMed  Google Scholar 

  224. Razani H, Díaz-Cabiale Z, Misane I, Wang FH, Fuxe K, Ogren SO. Prolonged effects of intraventricular galanin on a 5-hydroxytryptamine(1A) receptor mediated function in the rat. Neurosci Lett. 2001;299:145–9.

    Article  CAS  PubMed  Google Scholar 

  225. Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WE, Perelló M, Giblin L, Dinan TG, Cryan JF. Ghrelin’s orexigenic effect is modulated via a serotonin 2C receptor interaction. ACS Chem Neurosci. 2015;6:1186–97.

    Article  CAS  PubMed  Google Scholar 

  226. Schellekens H, van Oeffelen WE, Dinan TG, Cryan JF. Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J Biol Chem. 2013;288:181–91.

    Article  CAS  PubMed  Google Scholar 

  227. Wellman M, Abizaid A. Growth hormone secretagogue receptor dimers: a new pharmacological target. eNeuro. 2015;24;2(2). pii: ENEURO.0053-14.2015. doi:10.1523/ENEURO.0053-14.2015.

  228. Kamal M, Gbahou F, Guillaume JL, Daulat AM, Benleulmi-Chaachoua A, Luka M, Chen P, Kalbasi Anaraki D, Baroncini M, Mannoury la Cour C, Millan MJ, Prevot V, Delagrange P, Jockers R. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem 2015;290:11537–11546.

    Google Scholar 

  229. Cussac D, Rauly-Lestienne I, Heusler P, Finana F, Cathala C, Bernois S, De Vries L. μ-Opioid and 5-HT1A receptors heterodimerize and show signalling crosstalk via G protein and MAP-kinase pathways. Cell Signal. 2012;24:1648–57.

    Article  CAS  PubMed  Google Scholar 

  230. Jastrzebska B, Ringler P, Lodowski DT, Moiseenkova-Bell V, Golczak M, Müller SA, Palczewski K, Engel A. Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. J Struct Biol. 2011;176:387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Fonseca JM, Lambert NA. Instability of a class a G protein-coupled receptor oligomer interface. Mol Pharmacol. 2009;75:1296–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Johnston JM, Wang H, Provasi D, Filizola M. Assessing the relative stability of dimer interfaces in g protein-coupled receptors. PLoS Comput Biol. 2012;8:e1002649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc. 2012;134:10959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Huang J, Chen S, Zhang JJ, Huang XY. Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol. 2013;20:419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine Herrick-Davis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grinde, E., Herrick-Davis, K. (2017). Class A GPCR: Serotonin Receptors. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_6

Download citation

Publish with us

Policies and ethics