Skip to main content
Log in

On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface plasmon resonance spectroscopy allows the study of protein interaction dynamics in real-time. Application of this technique to G-protein coupled receptors, the largest family of receptors involved in signal transduction, has been complicated by their low level of expression and the critical dependence of their native conformation on the hydrophobic transmembrane lipid environment. Here, we investigate and compare three different strategies to immobilize rhodopsin, a prototypical G-protein coupled receptor on a sensor chip surface using antibodies and a lectin for receptor capturing. By further probing of different experimental conditions (pH, detergent type) we identified the optimal factors to maintain rhodopsin in a functional conformation and extended this approach to recombinant rhodopsin that was heterologously expressed in COS cells. Functional operation of rhodopsin on the sensor chip surface was proven by its activation and subsequent light-stimulated G-protein coupling. The influence of these experimental parameters on the association and dissociation kinetics of G-protein receptor coupling was determined. Thereby, we found that the kinetics of Gt interaction were not changed by the strategy of immobilization or the type of detergent. Regeneration of opsin directly on a chip allowed recycling of the immobilized native and recombinant receptor. Thus, the approach provides an experimental framework for choosing the most suitable conditions for the solubilization, immobilization, and for functional tests of rhodopsin on a biosensor surface.

Light-triggered binding of the G-protein transducin to recombinant rhodopsin on a biosensor surface. Rhodopsin is immobilized via a specific antibodies, interaction is monitored by surface plasmon resonance

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745

    Article  CAS  Google Scholar 

  2. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    Article  CAS  Google Scholar 

  3. Shimamura T, Hiraki K, Takahashi N, Hori T, Ago H, Masuda K, Takio K, Ishiguro M, Miyano M (2008) Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J Biol Chem 283:17753–17756

    Article  CAS  Google Scholar 

  4. Schertler GF (2005) Structure of rhodopsin and the metarhodopsin I photointermediate. Curr Opin Struct Biol 15:408–415

    Article  CAS  Google Scholar 

  5. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci USA 103:16123–16128

    Article  CAS  Google Scholar 

  6. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  CAS  Google Scholar 

  7. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  Google Scholar 

  8. Koch K-W (2000) Identification and characterization of calmodulin binding sites in cGMP-gated channel using surface plasmon resonance spectroscopy. Methods Enzymol 315:785–797

    Article  CAS  Google Scholar 

  9. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26:541–566

    Article  CAS  Google Scholar 

  10. Alves ID, Salamon Z, Varga E, Yamamura HI, Tollin G, Hruby VJ (2003) Direct observation of G-protein binding to the human delta-opioid receptor using plasmon-waveguide resonance spectroscopy. J Biol Chem 278:48890–48897

    Article  CAS  Google Scholar 

  11. Stenlund P, Babcock GJ, Sodroski J, Myszka DG (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal Biochem 316:243–250

    Article  CAS  Google Scholar 

  12. Kasheverov IE, Zhmak MN, Fish A, Rucktooa P, Khruschov AY, Osipov AV, Ziganshin RH, D'Hoedt D, Bertrand D, Sixma TK, Smit AB, Tsetlin VI (2009) Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor. J Neurochem 111:934–944

    Article  CAS  Google Scholar 

  13. Huang M, Lai WP, Wong MS, Yang M (2001) Effect of receptor phosphorylation on the binding between IRS-1 and IGF-1R as revealed by surface plasmon resonance biosensor. FEBS Lett 505:31–36

    Article  CAS  Google Scholar 

  14. Vidic J, Pla-Roca M, Grosclaude J, Persuy MA, Monnerie R, Caballero D, Errachid A, Hou Y, Jaffrezic-Renault N, Salesse R, Pajot-Augy E, Samitier J (2007) Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal Chem 79:3280–3290

    Article  CAS  Google Scholar 

  15. Vidic JM, Grosclaude J, Persuy MA, Aioun J, Salesse R, Pajot-Augy E (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 6:1026–1032

    Article  CAS  Google Scholar 

  16. Sen S, Jaakola VP, Pirila P, Finel M, Goldman A (2005) Functional studies with membrane-bound and detergent-solubilized alpha2-adrenergic receptors expressed in Sf9 cells. Biochim Biophys Acta 1712:62–70

    Article  CAS  Google Scholar 

  17. Heyse S, Ernst OP, Dienes Z, Hofmann KP, Vogel H (1998) Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance. Biochemistry 37:507–522

    Article  CAS  Google Scholar 

  18. Salamon Z, Wang Y, Brown MF, Macleod HA, Tollin G (1994) Conformational changes in rhodopsin probed by surface plasmon resonance spectroscopy. Biochemistry 33:13706–13711

    Article  CAS  Google Scholar 

  19. Bieri C, Ernst OP, Heyse S, Hofmann KP, Vogel H (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat Biotechnol 17:1105–1108

    Article  CAS  Google Scholar 

  20. Clark WA, Jian X, Chen L, Northup JK (2001) Independent and synergistic interaction of retinal G-protein subunits with bovine rhodopsin measured by surface plasmon resonance. Biochem J 358:389–397

    Article  CAS  Google Scholar 

  21. Komolov KE, Senin II, Philippov PP, Koch KW (2006) Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system. Anal Chem 78:1228–1234

    Article  CAS  Google Scholar 

  22. Jastrzebska B, Maeda T, Zhu L, Fotiadis D, Filipek S, Engel A, Stenkamp RE, Palczewski K (2004) Functional characterization of rhodopsin monomers and dimers in detergents. J Biol Chem 279:54663–54675

    Article  CAS  Google Scholar 

  23. Koch K-W, Lambrecht HG, Haberecht M, Redburn D, Schmidt HH (1994) Functional coupling of a Ca2+/calmodulin-dependent nitric oxide synthase and a soluble guanylyl cyclase in vertebrate photoreceptor cells. EMBO J 13:3312–3320

    CAS  Google Scholar 

  24. Kuhn H (1981) Interactions of rod cell-proteins with the disk membrane—influence of light, ionic-strength, and nucleotides. Curr Top Memb Transp 15:171–201

    Google Scholar 

  25. Bornancin F, Pfister C, Chabre M (1989) The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin. Eur J Biochem 184:687–698

    Article  CAS  Google Scholar 

  26. Oprian DD, Molday RS, Kaufman RJ, Khorana HG (1987) Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci USA 84:8874–8878

    Article  CAS  Google Scholar 

  27. Liu X, Garriga P, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa. Proc Natl Acad Sci USA 93:4554–4559

    Article  CAS  Google Scholar 

  28. Lange C, Koch KW (1997) Calcium-dependent binding of recoverin to membranes monitored by surface plasmon resonance spectroscopy in real time. Biochemistry 36:12019–12026

    Article  CAS  Google Scholar 

  29. Alves ID, Salgado GFJ, Salamon Z, Brown MF, Tollin G (2005) Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plsmon-waveguide resonance spectrscopy. Biophys J 88:198–210

    Article  CAS  Google Scholar 

  30. Getmanova E, Patel AB, Klein-Seetharaman J, Loewen MC, Reeves PJ, Friedman N, Sheves M, Smith SO, Khorana HG (2004) NMR spectroscopy of phosphorylated wild-type rhodopsin: mobility of the phosphorylated C-terminus of rhodopsin in the dark and upon light activation. Biochemistry 43:1126–1133

    Article  CAS  Google Scholar 

  31. Langen R, Cai K, Altenbach C, Khorana HG, Hubbell WL (1999) Structural features of the C-terminal domain of bovine rhodopsin: a site-directed spin-labeling study. Biochemistry 38:7918–7924

    Article  CAS  Google Scholar 

  32. De Grip WJ (1982) Thermal stability of rhodopsin and opsin in some novel detergents. Methods Enzymol 81:256–265

    Article  Google Scholar 

  33. Aveldano MI (1995) Phospholipid solubilization during detergent extraction of rhodopsin from photoreceptor disk membranes. Arch Biochem Biophys 324:331–343

    Article  CAS  Google Scholar 

  34. Garriga P, Liu X, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125→Arg in the transmembrane helix C. Proc Natl Acad Sci USA 93:4560–4564

    Article  CAS  Google Scholar 

  35. Wong JP, Reboul E, Molday RS, Kast J (2009) A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins. J Proteome Res 8:2388–2396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Paul Hargrave and Dr. Clay Smith for providing us with an anti-rhodopsin antibody. This work has been supported by grants SAF2005-08148-C04-02 and Acciones Integradas Hispano-Alemanas (HA2006-0130) from the Spanish Ministry of Science (to PG). Support was also from a grant of the EWE Stiftung (to KWK) and from the Deutscher Akademischer Austauschdienst DAAD within the program Acciones Integradas Hispano-Alemanas (to KWK). MA is the recipient of a predoctoral FPI fellowship from the Spanish Ministry of Science and DT is the recipient of a predoctoral fellowship from Universitat Politècnica de Catalunya (UPC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pere Garriga or Karl-Wilhelm Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komolov, K.E., Aguilà, M., Toledo, D. et al. On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy. Anal Bioanal Chem 397, 2967–2976 (2010). https://doi.org/10.1007/s00216-010-3876-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3876-4

Keywords

Navigation