Skip to main content

Advertisement

Log in

Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Paraquat (PQ) exposure causes degeneration of the dopaminergic neurons in an exposed organism while altered metabolism has a role in various neurodegenerative disorders. Therefore, the study presented here was conceived to depict the role of altered metabolism in PQ-induced Parkinson-like symptoms and to explore Drosophila as a potential model organism for such studies. Metabolic profile was generated in control and in flies that were fed PQ (5, 10, and 20 mM) in the diet for 12 and 24 h concurrent with assessment of indices of oxidative stress, dopaminergic neurodegeneration, and behavioral alteration. PQ was found to significantly alter 24 metabolites belonging to different biological pathways along with significant alterations in the above indices. In addition, PQ attenuated brain dopamine content in the exposed organism. The study demonstrates that PQ-induced alteration in the metabolites leads to oxidative stress and neurodegeneration in the exposed organism along with movement disorder, a phenotype typical of Parkinson-like symptoms. The study is relevant in the context of Drosophila and humans because similar alteration in the metabolic pathways has been observed in both PQ-exposed Drosophila and in postmortem samples of patients with Parkinsonism. Furthermore, this study provides advocacy towards the applicability of Drosophila as an alternate model organism for pre-screening of environmental chemicals for their neurodegenerative potential with altered metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pragya P, Shukla AK, Murthy RC, Abdin MZ, Kar Chowdhuri D (2014) Over-expression of superoxide dismutase ameliorates Cr(VI) induced adverse effects via modulating cellular immune system of Drosophila melanogaster. PLoS ONE 9:e88181

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sharma A, Mishra M, Ram KR, Kumar R, Abdin MZ, Chowdhuri DK (2011) Transcriptome analysis provides insights for understanding the adverse effects of endosulfan in Drosophila melanogaster. Chemosphere 82:370–376

    Article  CAS  PubMed  Google Scholar 

  3. Sharpe RM, Irvine DS (2004) How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ 328:447–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cannon JR, Greenamyre JT (2013) Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol Dis 57:38–46

    Article  CAS  PubMed  Google Scholar 

  5. Damstra T (1978) Environmental chemicals and nervous system dysfunction. Yale J Biol Med 51:457–468

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gibrat C, Saint-Pierre M, Bousquet M, Levesque D, Rouillard C, Cicchetti F (2009) Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions. J Neurochem 109:1469–1482

    Article  CAS  PubMed  Google Scholar 

  7. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    Article  CAS  PubMed  Google Scholar 

  8. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  9. Freire C, Koifman S (2012) Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology 33:947–971

    Article  CAS  PubMed  Google Scholar 

  10. Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case–control study in Taiwan. Neurology 48:1583–1588

    Article  CAS  PubMed  Google Scholar 

  11. Jenner P (2007) Oxidative stress and Parkinson’s disease. Handb Clin Neurol 83:507–520

    Article  PubMed  Google Scholar 

  12. Beal MF, Matthews RT, Tieleman A, Shults CW (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 783:109–114

    Article  CAS  PubMed  Google Scholar 

  13. Wersinger C, Sidhu A (2006) An inflammatory pathomechanism for Parkinson’s disease? Curr Med Chem 13:591–602

    Article  CAS  PubMed  Google Scholar 

  14. Schapira AH, Gu M, Taanman JW, Tabrizi SJ, Seaton T, Cleeter M, Cooper JM (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 44:S89–S98

    Article  CAS  PubMed  Google Scholar 

  15. Caudle WM, Bammler TK, Lin Y, Pan S, Zhang J (2011) Using ‘omics’ to define pathogenesis and biomarkers of Parkinson’s disease. Expert Rev Neurother 10:925–942

    Article  Google Scholar 

  16. Moretto A, Colosio C (2013) The role of pesticide exposure in the genesis of Parkinson’s disease: epidemiological studies and experimental data. Toxicology 307:24–34

    Article  CAS  PubMed  Google Scholar 

  17. Gollamudi S, Johri A, Calingasan NY, Yang L, Elemento O, Beal MF (2012) Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS ONE 7:e36191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O'Donnell JM (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci 27:2457–2467

    Article  CAS  PubMed  Google Scholar 

  19. Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK (2004) The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 279:32626–32632

    Article  CAS  PubMed  Google Scholar 

  20. Shukla AK, Pragya P, Chaouhan HS, Patel DK, Abdin MZ, Kar Chowdhuri D (2014) A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes. Neurobiol Aging 35:2419–e1-2419

    Article  PubMed  Google Scholar 

  21. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen CH, Chen SJ, Su CC, Yen CC, Tseng TJ, Jinn TR, Tang FC, Chen KL, Su YC, Lee KI, Hung DZ, Huang CF (2013) Chloroacetic acid induced neuronal cells death through oxidative stress-mediated p38-MAPK activation pathway regulated mitochondria-dependent apoptotic signals. Toxicology 303:72–82

    Article  CAS  PubMed  Google Scholar 

  23. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252

    Article  CAS  PubMed  Google Scholar 

  24. Harrigan GG, Goodacre R (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  25. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683

    Article  CAS  PubMed  Google Scholar 

  26. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  27. Vinayavekhin N, Homan EA, Saghatelian A (2010) Exploring disease through metabolomics. ACS Chem Biol 5:91–103

    Article  CAS  PubMed  Google Scholar 

  28. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900

    Article  CAS  PubMed  Google Scholar 

  29. Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One 4:e7551

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  CAS  PubMed  Google Scholar 

  31. Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, Geisler JP, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer JL (2005) Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 113:782–788

    Article  CAS  PubMed  Google Scholar 

  32. Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, Beecher C, Harrison S, Vouros P, Flarakos J, Vigneau-Callahan K, Matson TD, Newhall KM, Beal MF, Brown RH Jr, Kaddurah-Daouk R (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang J, Xu G, Hong Q, Liebich HM, Lutz K, Schmulling RM, Wahl HG (2004) Discrimination of type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci 813:53–58

    Article  CAS  PubMed  Google Scholar 

  34. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Milne SB, Mathews TP, Myers DS, Ivanova PT, Brown HA (2013) Sum of the parts: mass spectrometry-based metabolomics. Biochemistry 52:3829–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mudiam MKR, Ch R, Saxena PN (2013) Gas chromatography–mass spectrometry based metabolomic approach for optimization and toxicity evaluation of earthworm sub-lethal responses to carbofuran. PLoS One 8:e81077

  37. Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T (2011) Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7:307–328

    Article  CAS  PubMed  Google Scholar 

  38. Kuehnbaum NL, Britz-McKibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113:2437–2468

    Article  CAS  PubMed  Google Scholar 

  39. Feany MB (2000) Studying human neurodegenerative diseases in flies and worms. J Neuropathol Exp Neurol 59:847–856

    Article  CAS  PubMed  Google Scholar 

  40. Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 9:504–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benford D, Hanley B, Bottrill K, Oehlschlager S, Balls M, Branca F, Castegnaro JJ, Descotes J, Hemminiki K, Lindsay D, Schilter B (2000) Biomarkers as predictive tools in toxicity testing. ATLA 28:119–131

    Google Scholar 

  42. Singh MP, Ram KR, Mishra M, Shrivastava M, Saxena DK, Chowdhuri DK (2010) Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers. Chemosphere 79:577–587

    Article  CAS  PubMed  Google Scholar 

  43. Girardot F, Monnier V, Tricoire H (2004) Genome wide analysis of common and specific stress responses in adult Drosophila melanogaster. BMC Genomics 5:74

    Article  PubMed  PubMed Central  Google Scholar 

  44. De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M, Speed TP (2012) Normalizing and integrating metabolomics data. Anal Chem 84:10768–10776

    Article  PubMed  Google Scholar 

  45. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196

    Article  CAS  Google Scholar 

  47. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics, 2nd edn. Springer, New York

    Book  Google Scholar 

  48. Westerhuis JA, Hoefsloot HC, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLS-DA cross validation. Metabolomics 4:81–89

    Article  CAS  Google Scholar 

  49. Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9:280–299

    Article  CAS  PubMed  Google Scholar 

  50. Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26:2342–2344

    Article  CAS  PubMed  Google Scholar 

  51. Jordan J, Galindo MF, Tornero D, Benavides A, Gonzalez C, Agapito MT, Gonzalez-Garcia C, Cena V (2002) Superoxide anions mediate veratridine-induced cytochrome c release and caspase activity in bovine chromaffin cells. Br J Pharmacol 137:993–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, Chowdhuri DK (2014) Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease. PLoS One 9:e98886

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  PubMed  Google Scholar 

  54. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  55. Pragya P, Shukla AK, Murthy RC, Abdin MZ, Kar Chowdhuri D (2014) Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster. Environ Toxicol (Epub)

  56. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  57. Handel VE (1985) Rapid determination of glycogen and sugars in mosquitoes. J Arut Mosq Corvrnol Assoc 01:299–301

    Google Scholar 

  58. Wang Z, Ferdousy F, Lawal H, Huang Z, Daigle JG, Izevbaye I, Doherty O, Thomas J, Stathakis DG, O'Donnell JM (2011) Catecholamines up integrates dopamine synthesis and synaptic trafficking. J Neurochem 119:1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Du G, Liu X, Chen X, Song M, Yan Y, Jiao R, Wang CC (2010) Drosophila histone deacetylase 6 protects dopaminergic neurons against {alpha}-synuclein toxicity by promoting inclusion formation. Mol Biol Cell 21:2128–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma A, Mishra M, Shukla AK, Kumar R, Abdin MZ, Kar Chowdhuri D (2012) Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J Hazard Mater 221–222:275–287

    Article  PubMed  Google Scholar 

  61. Cai HL, Li HD, Yan XZ, Sun B, Zhang Q, Yan M, Zhang WY, Jiang P, Zhu RH, Liu YP, Fang PF, Xu P, Yuan HY, Zhang XH, Hu L, Yang W, Ye HS (2012) Metabolomic analysis of biochemical changes in the plasma and urine of first-episode neuroleptic-naive schizophrenia patients after treatment with risperidone. J Proteome Res 11:4338–4350

    Article  CAS  PubMed  Google Scholar 

  62. Clements RS Jr, DeJesus PV Jr, Winegrad AI (1973) Raised plasma-myoinositol levels in uraemia and experimental neuropathy. Lancet 1:1137–1141

    Article  PubMed  Google Scholar 

  63. Ahmed SS, Santosh W, Kumar S, Christlet HT (2009) Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 16:63

    Article  PubMed  PubMed Central  Google Scholar 

  64. Prestel J, Gempel K, Hauser TK, Schweitzer K, Prokisch H, Ahting U, Freudenstein D, Bueltmann E, Naegele T, Berg D, Klopstock T, Gasser T (2008) Clinical and molecular characterisation of a Parkinson family with a novel PINK1 mutation. J Neurol 255:643–648

    Article  CAS  PubMed  Google Scholar 

  65. van der Knaap MS, Ross B, Valk J (1994) Uses of MR in inborn errors of metabolism. In: Kucharczyk J, Barkovich JA, Moseley M (eds) Magnetic resonance neuroimaging. CRC Press, Inc, pp 246–309

    Google Scholar 

  66. Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG (1992) Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J 282:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Biden TJ, Wollheim CB, Schlegel W (1986) Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells (GH3). Translocation of Ca2+ into mitochondria from a functionally discrete portion of the nonmitochondrial store. J Biol Chem 261:7223–7229

    CAS  PubMed  Google Scholar 

  68. Zaidi A, Fernandes D, Bean JL, Michaelis ML (2009) Effects of paraquat-induced oxidative stress on the neuronal plasma membrane Ca(2+)-ATPase. Free Radic Biol Med 47:1507–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE, Hargreaves IP, Pope S, Holton JL, Lees A, Heales SJ, Bandopadhyay R (2014) Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging 35:1111–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thompson SN, Borchardt DB (2003) Glucogenic blood sugar formation in an insect Manduca sexta L.: asymmetric synthesis of trehalose from 13C enriched pyruvate. Comp Biochem Physiol B Biochem Mol Biol 135:461–471

    Article  CAS  PubMed  Google Scholar 

  71. Shriver LP, Manchester M (2011) Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci Rep 1:79

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bus JS, Aust SD, Gibson JE (1976) Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environ Health Perspect 16:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases. AAPS J 8:E314–E321

    Article  PubMed  PubMed Central  Google Scholar 

  74. Coyle FE (1995) Substrate utilization during exercise in active people13. Am J Clin Nutr 61:968S–979S

    CAS  PubMed  Google Scholar 

  75. Fabelo N, Martin V, Santpere G, Marin R, Torrent L, Ferrer I, Diaz M (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 17:1107–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paik MJ, Cho IS, Jung IM, Lee G, Kim KR (2008) Altered free amino acid levels in brain cortex tissues of mice with Alzheimer’s disease as their N(O, S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives. BMB Rep 41:23–28

    Article  CAS  PubMed  Google Scholar 

  77. Lopez-Corcuera B, Geerlings A, Aragon C (2001) Glycine neurotransmitter transporters: an update. Mol Membr Biol 18:13–20

    Article  CAS  PubMed  Google Scholar 

  78. Sur C, Kinney GG (2014) Glycine transporter 1 inhibitors and modulation of NMDA receptor-mediated excitatory neurotransmission. Curr Drug Targets 8:643–649

    Article  Google Scholar 

  79. Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H (2003) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976:243–252

    Article  CAS  PubMed  Google Scholar 

  80. Nicholls DG (2009) Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 1787:1416–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greenamyre JT, O'Brien CF (1991) N-Methyl-d-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 48:977–981

    Article  CAS  PubMed  Google Scholar 

  82. Xue JG, Masuoka T, Gong XD, Chen KS, Yanagawa Y, Law SK, Konishi S (2011) NMDA receptor activation enhances inhibitory GABAergic transmission onto hippocampal pyramidal neurons via presynaptic and postsynaptic mechanisms. J Neurophysiol 105:2897–2906

    Article  CAS  PubMed  Google Scholar 

  83. Abbott RJ, Pye IF, Nahorski SR (1982) CSF and plasma GABA levels in Parkinson’s disease. J Neurol Neurosurg Psychiatry 45:253–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shen L, Ji HF (2013) Low uric acid levels in patients with Parkinson’s disease: evidence from meta-analysis. BMJ Open 3:e003620

    Article  PubMed  PubMed Central  Google Scholar 

  85. Annanmaki T, Muuronen A, Murros K (2007) Low plasma uric acid level in Parkinson’s disease. Mov Disord 22:1133–1137

    Article  PubMed  Google Scholar 

  86. Yong VW, Perry TL, Krisman AA (1986) Depletion of glutathione in brainstem of mice caused by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is prevented by antioxidant pretreatment. Neurosci Lett 63:56–60

    Article  CAS  PubMed  Google Scholar 

  87. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Article  CAS  PubMed  Google Scholar 

  88. Fridovich I (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  89. Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 72:113–120

    Article  CAS  Google Scholar 

  90. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, Dr. C. S. Nautiyal for support. We thank Bloomington Stock Centre, USA, for Oregon R + fly stock and Dr. Wendi Neckameyer, MO, USA, for anti-Drosophila Tyrosine Hydroxylase antibody, and Mr. Ram Narayan, Technical Officer, CSIR-IITR, Lucknow, for his help in confocal microscopy. Financial support to AKS (Grant No. EU249IV/2008/JUNE/318721) from the University Grants Commission (UGC), New Delhi, and to ChR (Grant No.20-6/2008(ii)/EU-IV), to PP (Grant No. 31/029(0199)/2008-EMR-1), and HSC (Grant No. 19-06/2011(i)/EU-IV) from the Council of Scientific and Industrial Research (CSIR), New Delhi, MKRM from CSIR-Network project (BSC0111), and to DKC from CSIR-Network project (BSC-0103) is thankfully acknowledged. IITR communication number is 3262.

Conflict of Interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debapratim Kar Chowdhuri or Mohana Krishna Reddy Mudiam.

Additional information

The authors Arvind Kumar Shukla, Ch. Ratnasekhar, and Prakash Pragya contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 48 kb)

Fig S1

Partial least-square discriminate analysis (PLS-DA) of metabolome from adult Drosophila brain showing control-12 and 24 h (1–2), 5, 10, and 20 mM PQ for 12 h (3–5) and 24 h (6–8) respectively (GIF 15 kb)

High-resolution image (TIFF 1686 kb)

Fig S2

Permutation analysis of PLS-DA models derived from control and PQ-exposed Drosophila brain samples. Statistical validation of the PLS-DA was done by permutation analysis using 500 different model permutations. The goodness of fit and predictive capability of the original class assignments are much higher compared with ratios based on the permutation class assignments (GIF 3 kb)

High-resolution image (TIFF 706 kb)

Fig S3

Individual PCA scores plots of PC1 (first PCA component) versus PC2 (second PCA component) for GC-MS spectra of the brain tissue samples of D. melanogaster showing separation profile of control flies from PQ-exposed organism under different treatment conditions; 5, 10, and 20 mM PQ for 12 h versus control-12 h (ac), and the same PQ exposure concentrations for 24 h versus control-24 h (df) respectively (GIF 32 kb)

High-resolution image (TIFF 4085 kb)

Fig S4

Individual PCA scores plots of PC1 (first PCA component) versus PC2 (second PCA component) for GC-MS spectra of the brain tissue extracts of D. melanogaster after 12 h (a) and 24 h (b) of PQ exposure to fly; control-12 and control-24 h (1–2), 5, 10, and 20 mM PQ for 12 h (3–5) and 24 h (6–8) respectively (GIF 11 kb)

High-resolution image (TIFF 1523 kb)

Fig S5

Predictive accuracy of the model discriminating brain samples of control from that of PQ-exposed Drosophila using ROC curve analysis (GIF 6 kb)

High-resolution image (TIFF 966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A.K., Ratnasekhar, C., Pragya, P. et al. Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster . Mol Neurobiol 53, 254–269 (2016). https://doi.org/10.1007/s12035-014-9003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9003-3

Keywords

Navigation