Skip to main content

Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects

  • Conference paper
Neuropsychiatric Disorders An Integrative Approach

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 72))

Abstract

Biochemical studies on postmortem brains of patients with Parkinson’s disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCH1), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTHl-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine β-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anglade P, Vyas S, Javoy-Agid F, Ilerreto MT, Michel PP, Marquez J, Pouatt-Prigent A, Ruberg M, Hirsch C, Agid Y (1997) Apotosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31

    PubMed  CAS  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch H (1994) Immunocytochemical analysis of tumor necrosis factor and its receptor in Paekinson’s disease. Neurosci Lett 172: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Müller CM, Rüb U, Ackermann H, Bratzke H, de Vos Rai RAI, Del Tredici K (2006) Pathology associated with sporadic Parkinson’s disease — where does it end? J Neural Transm Suppl 70: 89–97

    Google Scholar 

  • Bringmann G, Brückner R, Münchbach M, Feinei D, God R, Wesemann W, Grote C, Herderich M, Diem S, Lesch K-P, Mössner R, Storch A (2000) Clonal-derived mammalian alkaloid with neurotoxic properties. “TaClo”. In: Storch A, Collins MA (eds) Neurotoxic factors in Parkinson’s disease and related disorders. Kluwer Academic Publishing/Plenum, New York, pp 145–149

    Google Scholar 

  • Collins MA, Neafsey El (2000) β-Carboline analogues of MPP+ as environmental neurotoxins. In: Storch MA, Collins MA (eds) Neurotoxic factors in Parkinson’s disease and related disorders. Kluwer Academic Publishing/Plenum, New York, pp 115–130

    Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des Extrapyramidaren Systems. Klin Wochenschr 38: 1236–1239

    Article  PubMed  CAS  Google Scholar 

  • Foley P, Mizuno Y, Nagatsu T, Sano A, Youdim MBH, McGeer P, McGeer E, Riederer P (2000) The L-Dopa story — an early lapanese contribution. Parkinsonism Relat Disord 6: 1–1

    Article  Google Scholar 

  • Grima B, Lamouroux A, Boni C, Julien J-F, Javoy-Agid F, Mallet 1 (1987) A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics. Nature 326: 707–711

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prignet A, Turmel H, Srinivasan A, Ruberg M, Evans GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerable factor and a final effector in the apoptotic cell death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97: 2875–2880

    Article  PubMed  CAS  Google Scholar 

  • Hashida H, Goto J, Suzuki T, Jeong S-Y, Masuda N, Ooie T, Tachiiri Y, Tsuchiya H, Kanazawa I (2001) Single cell analysis of CAG repeat in brains of dentatorubral-pallidoluysian atrophy (DRPLA). J Neurol Sci 190: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Haycock JW (2002) Species differences in the expression of multiple tyrosine hydroxylase protein isoforms. J Neurochem 81: 974–953

    Article  Google Scholar 

  • Hayley S, Anisman H (2005) Multiple mechanisms of cytokine action in neurodegenerative and psychiatric states: neurochemical and molecular substrates. Curr Pharmac Design 11: 947–962

    Article  CAS  Google Scholar 

  • Hirsch EC, Hunot S, Faucheux BA, Agid Y, Mizuno Y, Mochizuki H, Tatton WG, Tatton N, Olanow WC (1999) Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov Disord 14: 383–385

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci 991: 214–228

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa S, Ichinose H, Nagatsu T (1990) Multiple mRNAs of monkey tyrosine hydroxylase. Biochem Biophys Res Commun 173: 1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H, Sumi-Ichinose C, Ohye T, Hagino Y, Fujit K, Nagatsu T (1992) Tissue-specific alternative splicing of the first exon generates two types of mRNAs in human aromatic L-amino acid decarboxylase. Biochemistry 31: 11546–11550

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Yoshida M, Ueda S, Nagatsu T (1993) Increased heterogeneity of tyrosine hydroxylase in humans. Biochem Biopys Res Commun 195: 158–165

    Article  CAS  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T (1994) Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm [P-D Sect] 8: 149–158

    Article  CAS  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brain. Acta Neuropatholgica 106: 518–526

    Article  CAS  Google Scholar 

  • Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2005) Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol 109: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2005) Cell death mechanism in Parkinson’s disease. J Neural Transm 107: 1–29

    Article  Google Scholar 

  • Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun 146: 971–975

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong S-Y, Kanazawa I (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for exicitotoxicity in ALS. J Neurochem 85: 680–689

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988) Structure of the human tyrosine hydrox-ylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. J Biochem 103: 907–912

    PubMed  CAS  Google Scholar 

  • Kotake Y, Tasaki Y, Makino S, Ohta S, Hirobe M (1995) l-Benzyl-1,2,3,4-tetrahydroisoquinoline as a parkinsonism-inducing agent: a novel endogenous amine in mouse brain and parkinsonian CSF. J Neurochem 65: 2633–2638

    Article  PubMed  CAS  Google Scholar 

  • Langsten JW, Ballard P, Tetrad JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Article  Google Scholar 

  • Langsten JW, Forno JS, Tetrad J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine exposure. Ann Neurol 46: 598–605

    Article  Google Scholar 

  • Lloyd K, Hornykiewicz O (1970) Parkinson’s disease: activity of L-DOPA decarboxylase in discrete brain regions. Science 171: 1075–1078

    Google Scholar 

  • Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson’s disease: effect of L-dopa therapy. J Pharmacol Exp Ther 195: 453–464

    PubMed  CAS  Google Scholar 

  • Matsubara K (2000) N-Methyl-β-carbolinium neurotoxins in Parkinson’s disease. In: Storch A, Collins MA (eds) Neurotoxic factors in Parkinson’s disease and related disorders. Kluwer Academic Publishing/ Plenum, New York, pp 131–143

    Google Scholar 

  • McGeer PL, McGeer EG (1976) Enzymes associated with the metabolism of catecholamine, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea. J Neurochem 26: 65–76

    PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s disease and Alzheimer’s disease brains. Neurology 38: 1285–1291

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1995) The inflammatory response system of brain, implications for therapy of Alzheimer’s and other neurodegenetative diseases. Brain Res Rev 21: 195–218

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54: 599–604

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Hattori N, Yoshino H, Hatano Y, Satoh K, Tomiyama H, Li Y (2006) Progress in familial Parkinson’s disease. J Neural Transm Suppl 70: 191–204

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988a) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in Parkinsonian brain. J Neural Transm 72: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kojima K, Inagaki H, Kondo T, Narabayashi H, Arai T, Teradaira R, Fujita K, Kiuchi K, Nagatsu T (1988b) Sandwich enzyme immunoassay of dopamine-β-hydroxylase in cerebrospinal fluid from control and Parkinsonian patients. Neurochem Int 12: 187–191

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fuita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165: 208–210

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Togari A, Ogawa M, Ikeguchi K, Shizuma N, Fan D-S, Nakano I, Nagatsu T (1998) Effects of repeated systemic administration of l-methyl-4-phenyl-l,2,3,6-tetrahydripyridine (MPTP) to mice on interleukin-1 β and nerve growth factor in the striatum. Neurosci Lett 250: 25–28

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T (1999) Increase in level of tumor necrosis factor (TNF)-α in 6-hydroxydopamine-lesioned striatum in rats is suppressed by immunosupressant FK506. Neurosci Lett 289: 165–168

    Article  Google Scholar 

  • Mogi M, Nagatsu T (1999) Neurotrophins and cytokines in Parkinson’s disease. Adv Neurol 80: 135–139

    PubMed  CAS  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsuu T (2000) Caspase activities and tumor necrosis-α Rl (p55) level were elevated in the subsantia nigra from Parkinsonian brain. J Neural Transm 107: 335–341

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Kato T, Numata (Sudo) Y, Ikuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine N-methyltransferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75: 221–232

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Yamaguchi T, Kato T, Sugimoto T, Matsuura S, Akino M, Nagatsu I, Iizuka R, Narabayashi H (1981) Biopterin in human brain and urine from controls and parkinsonian patients: application of a new radioimmunoassay. Clin Chim Acta 109: 305–311

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Yamaguchi T, Rahman MK, Trocewicz J, Oka K, Hirata Y, Nagatsu I, Narabayashi H, Kondo T, Iizuka R (1984) Catecholamine related-enzymes and the biopterin cofactor in Parkinson’s disease. Adv Neurol 40: 467–473

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Horikoshi T, Sawada M, Nagatsu I, Kondo T, Iizuka R, Narabayashi H (1986) Biosynthesis of tetrahydrobiopterin in parkinsonian human brain. Adv Neurol 45: 223–226

    Google Scholar 

  • Nagatsu T, Kojima K (1988) Application of electrochemical detection in high-performance liquid chromatography to the assay of biologically active compounds. Trend Anal Chem 7: 21–27

    Article  CAS  Google Scholar 

  • Nagatau T (1990) Changes in tyrosine hydroxylase in parkinsonian brains and in the brain of MPTP-treated mice. Adv Neurol 53: 207–214

    Google Scholar 

  • Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29: 99–111

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A, Riederer P (1999) Cytokines in Parkinson’s disease. Neurosci News 2: 88–90

    CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari F (2000a) Cytokines in Parkinson’s disease. J Neural Transm Suppl 58: 143–151

    PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari F (2000b) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm 60: 277–290 Suppl 60: 277–290

    Google Scholar 

  • Nagatsu T (2002a) Amine-related neurotoxins in Parkinson’s disease: past, present, and future. Neurotoxicol Teratol 24: 565–569

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T (2002b) Parkinson’s disease: changes in apoptosis-related factors suggesting possible gene therapy. J Neural Transm 109: 731–745

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharmaceut Design 11: 999–1016

    Article  CAS  Google Scholar 

  • Nagatsu T, Sawada M (2006) Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol 26: 779–800

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M (1996) Dopamine-derived endogenous 1(R), 2(N)-dimethyl-6,7-dihydroxy-l,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rats: biochemical, pathological and behavioral studies. Brain Res 709: 285–295

    Article  PubMed  CAS  Google Scholar 

  • Ohye T, Ichinose H, Ogawa M, Yoshida M, Nagatsu T (1995) Alterations in multiple tyrosine hydroxylase mRNAs in the substantia nigra, locus coeruleus and adrenal gland of MPTP-treated Parkinsonian monkeys. Neurodegeneation 4: 81–85

    Article  CAS  Google Scholar 

  • Rausch W-D, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson’s disease: effects of iron and phosphorylating agents. J Neurochem 50: 202–208

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Rausch W-D, Birkmayer W, Jellinger K, Seemann D (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson’s disease and metabolic encepahlopathies. J Neural Transm Suppl 14: 121–131

    PubMed  CAS  Google Scholar 

  • Riederer P, Reichmann H, Janetzky B, Sian J, Lesch K-P, Lange KW, Double KL, Nagatsu T, Gerlach M (2001) Neural degeneration in Parkinson’s disease. In: Calne D, Calne S (eds) Parkinson’s disease: Adv Neurol 86. Lippincott Williams & Wilkins, Philadelphia, pp 125–136

    Google Scholar 

  • Rogers J, Kovelowski CJ (2003) Inflammatory mechanisms in Parkinson’s disease. In: Wood PL (ed) Neuroinflammation. Humana Press, Totowa, New lersey, pp 391–403

    Google Scholar 

  • Sano I (1960) Biochemistry of the extrapyramidal system. Shinkei Kenyu No Shinnpo (Adv Neurol Sci) 5: 42–48; Translated into English (by

    Google Scholar 

  • Sano A (2000) Parkinsonism Relat Disord 6: 303–306

    Article  Google Scholar 

  • Sawada M, Nagatsu T, Nagatsu I, Ito K, Iizuka R, Kondo T, Narabayashi H (1985) Tryptophan hydroxylase activity in the brains of controls and parkinsonian patients. J Neural Transm 62: 107–115

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Hirata Y, Arai H, Iizuka R, Nagatsu T (1987) Tyrosine hydroxylase, tryptophan hydroxylase, biopterin, and neopterin in the brains of normal controls and patients with senile dementia of Alzheimer type. J Neurochem 48: 760–764

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70: 373–381

    PubMed  CAS  Google Scholar 

  • Trocewicz J, Oka K, Nagatsu T, Nagatsu I, Iizuka R, Narabayashi H (1982) Phenylethanolamine N-methyltransferase activity in human brains. Biochem Med 27: 317–324

    Article  PubMed  CAS  Google Scholar 

  • Vilhardt F, Piastre O, Sawada M, Suzuki K, Wiznerowicz M, Kiyokawa E, Trono D, Krause K-H (2002) The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J Biol Chem 277: 42136–42143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nagatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Nagatsu, T., Sawada, M. (2007). Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. In: Gerlach, M., Deckert, J., Double, K., Koutsilieri, E. (eds) Neuropsychiatric Disorders An Integrative Approach. Journal of Neural Transmission. Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73574-9_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73573-2

  • Online ISBN: 978-3-211-73574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics