Skip to main content
Log in

Methionine Exposure Alters Glutamate Uptake and Adenine Nucleotide Hydrolysis in the Zebrafish Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypermethioninemic patients may exhibit different neurological dysfunctions, and the mechanisms underlying these pathologies remain obscure. Glutamate and ATP are important excitatory neurotransmitters co-released at synaptic clefts, and whose activities are intrinsically related. Adenosine—the final product of ATP breakdown—is also an important neuromodulator. Here, we investigated the effects of long-term (7-day) exposure to 1.5 or 3 mM methionine (Met) on glutamate uptake in brain tissues (telencephalon, optic tectum, and cerebellum) and on ATP, ADP, and AMP catabolism by ecto-nucleotidases found in brain membrane samples, using a zebrafish model. Also, we evaluated the expression of ecto-nucleotidase (ntdp1, ntdp2mg, ntdp2mq, ntdp2mv, ntdp3, and nt5e) and adenosine receptor (adora1, adora2aa, adora2ab, adora2b) genes in the brain of zebrafish exposed to Met. In animals exposed to 3.0 mM Met, glutamate uptake in the telencephalon decreased significantly. Also, ATP and ADP (but not AMP) catabolism decreased significantly at both Met concentrations tested. The messenger RNA (mRNA) levels of ntpd genes and of the adenosine receptors adora1 and adora2aa increased significantly after Met exposure. In contrast, adora2ab mRNA levels decreased after Met exposure. Our data suggest that glutamate and ATP accumulate at synaptic clefts after Met exposure, with potential detrimental effects to the nervous system. This phenomenon might explain, at least in part, the increased susceptibility of hypermethioninemic patients to neurological symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benevenga NJ, Steele RD (1984) Adverse effects of excessive consumption of amino acids. Annu Rev Nutr 4:157–181

    Article  CAS  PubMed  Google Scholar 

  2. Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR (ed) The metabolic and molecular basis of inherited disease. McGraw Hill Book Company, New York, pp 2007–2056

    Google Scholar 

  3. Garlick PJ (2006) Toxicity of methionine in humans. J Nutr 136:1722S–1725S, Review

    CAS  PubMed  Google Scholar 

  4. Römer P, Weingärtner J, Desaga B, Kubein-Meesenburg D, Reicheneder C, Proff P (2012) Effect of excessive methionine on the development of the cranial growth plate in newborn rats. Arch Oral Biol 57(9):1225–1230. doi:10.1016/j.archoralbio.2012.02.007

    Article  PubMed  Google Scholar 

  5. Mudd SH (2011) Hypermethioninemias of genetic and Non-genetic origin: a review. Am J Med Genet C: Semin Med Genet 157:3–32. doi:10.1002/ajmg.c.30293

    Article  CAS  Google Scholar 

  6. Mudd SH, Levy HL, Tangerman A, Boujet C, Buist N, Davidson-Mundt A, Hudgins L, Oyanagi K, Nagao M, Wilson WG (1995) Isolated persistent hypermethioninemia. Am J Hum Genet 57:882–892

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Couce ML, Bóveda MD, Castiñeiras DE, Corrales FJ, Mora MI, Fraga JM, Mudd SH (2008) Hypermethioninaemia due to methionine adenosyltransferase I/III (MAT I/III) deficiency: diagnosis in an expanded neonatal screening programme. J Inherit Metab Dis 2:S233–S239. doi:10.1007/s10545-008-0811-3

    Article  Google Scholar 

  8. Labrune P, Perignon JL, Rault M, Brunet C, Lutun H, Charpentier C et al (1990) Familial hypermethioninemia partially responsive to dietary restriction. J Pediatr 117:220–226

    Article  CAS  PubMed  Google Scholar 

  9. Chamberlin ME, Ubagai T, Mudd SH, Wilson WG, Leonard JV, Chou JY (1996) Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. J Clin Invest 98:1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yaghmai R, Kashani AH, Geraghty MT, Okoh J, Pomper M, Tangerman A, Wagner C, Stabler SP, Allen RH, Mudd SH, Braverman N (2002) Progressive cerebral edema associated with high methionine levels and betaine therapy in a patient with cystathionine beta-synthase (CBS) deficiency. Am J Med Genet 108:57–63

    Article  PubMed  Google Scholar 

  11. Nagao M, Tanaka T, Furujo M (2013) Spectrum of mutations associated with methionine adenosyltransferase I/III deficiency among individuals identified during newborn screening in Japan. Mol Genet Metab 110(4):460–464. doi:10.1016/j.ymgme.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  12. Furujo M, Kinoshita M, Nagao M, Kubo T (2012) Methionine adenosyltransferase I/III deficiency: neurological manifestations and relevance of S-adenosylmethionine. Mol Genet Metab 107(3):253–256. doi:10.1016/j.ymgme.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  13. Martins E, Marcão A, Bandeira A, Fonseca H, Nogueira C, Vilarinho L (2012) Methionine adenosyltransferase I/III deficiency in Portugal: high frequency of a dominantly inherited form in a small area of Douro high lands. JIMD Rep 6:107–112. doi:10.1007/8904_2011_124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Couce ML, Bóveda MD, García-Jimémez C, Balmaseda E, Vives I, Castiñeiras DE, Fernández-Marmiesse A, Fraga JM, Mudd SH, Corrales FJ (2013) Clinical and metabolic findings in patients with methionine adenosyltransferase I/III deficiency detected by newborn screening. Mol Genet Metab 110(3):218–221. doi:10.1016/j.ymgme.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  15. Hirabayashi K, Shiohara M, Yamada K, Sueki A, Ide Y, Takeuchi K, Hagimoto R, Kinoshita T, Yabuhara A, Mudd SH, Koike K (2013) Neurologically normal development of a patient with severe methionine adenosyltransferase I/III deficiency after continuing dietary methionine restriction. Gene 530(1):104–108. doi:10.1016/j.gene.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  16. Stefanello FM, Matté C, Scherer EB, Wannmacher CM, Wajner M, Wyse ATS (2007) Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 160:1–4

    Article  CAS  PubMed  Google Scholar 

  17. Stefanello FM, Scherer EB, Kurek AG, Mattos CB, Wyse ATS (2007) Effect of hypermethioninemia on some parameters of oxidative stress and on Na(+), K (+)-ATPase activity in hippocampus of rats. Metab Brain Dis 22:172–182

    Article  CAS  PubMed  Google Scholar 

  18. Stefanello FM, Ferreira AG, Pereira TC, da Cunha MJ, Bonan CD, Bogo MR, Wyse ATS (2011) Acute and chronic hypermethioninemia alter Na+,K(+)-ATPase activity in rat hippocampus: prevention by antioxidants. Int J Dev Neurosci 29:483–488. doi:10.1016/j.ijdevneu.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  19. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na,K-ATPase. J Neurosci 29(25):8143–8155. doi:10.1523/JNEUROSCI. 1081-09.2009

    Article  CAS  PubMed  Google Scholar 

  20. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695

    Article  CAS  PubMed  Google Scholar 

  21. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  CAS  PubMed  Google Scholar 

  22. Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    Article  CAS  PubMed  Google Scholar 

  23. Struzynska L (2009) A glutamatergic component of lead toxicity in adult brain: the role of astrocytic glutamate transporters. Neurochem Int 55:151–156. doi:10.1016/j.neuint.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  24. Benarroch EE (2010) Glutamate transporters: diversity, function, and involvement in neurologic disease. Neurology 74:259–264. doi:10.1212/WNL.0b013e3181cc89e3

    Article  PubMed  Google Scholar 

  25. Mori M, Heuss C, Gähwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535(Pt 1):115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sperlágh B, Zsilla G, Baranyi M, Illes P, Vizi ES (2007) Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience 149(1):99–111

    Article  PubMed  Google Scholar 

  27. Burnstock G (2009) Purinergic cotransmission. F1000 Biol Rep 1:46. doi:10.3410/B1-46

    Article  PubMed  PubMed Central  Google Scholar 

  28. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274. doi:10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  29. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  30. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29. doi:10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  31. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  32. Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch 452:573–588

    Article  CAS  PubMed  Google Scholar 

  33. Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618

    Article  CAS  PubMed  Google Scholar 

  35. Zimmermann H (2001) Ectonucleotidases: some recent developments and note on nomenclature. Drug Dev Res 52:46–56

    Article  Google Scholar 

  36. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694. doi:10.1016/j.bbamcr.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  37. Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology: XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  38. Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal 1:111–134. doi:10.1007/s11302-005-0649-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  CAS  PubMed  Google Scholar 

  40. Stone TW, Forrest CM, Mackay GM, Stoy N, Darlington LG (2007) Tryptophan, adenosine, neurodegeneration and neuroprotection. Metab Brain Dis 22:337–352

    Article  CAS  PubMed  Google Scholar 

  41. Schwarzschild MA (2007) Adenosine A2A antagonists as neurotherapeutics: crossing the bridge. Prog Neurobiol 83(5):261–262

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ribeiro JA, Sebastião AM, de Mendonça A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68(6):377–392

    Article  CAS  PubMed  Google Scholar 

  43. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399. doi:10.1016/j.bbamem.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  44. Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  CAS  PubMed  Google Scholar 

  45. Matos M, Augusto E, Santos-Rodrigues AD, Schwarzschild MA, Chen JF, Cunha RA, Agostinho P (2012) Adenosine A(2A) receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 60(5):702–716. doi:10.1002/glia.22290

    Article  PubMed  Google Scholar 

  46. Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3:63–74

    Article  CAS  PubMed  Google Scholar 

  47. Goldsmith P (2004) Zebrafish as a pharmacological tool: the how, why and when. Curr Opin Pharmacol 4:504–512

    Article  CAS  PubMed  Google Scholar 

  48. Blank M, Guerim LD, Cordeiro RF, Vianna MRM (2009) A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 92:529–534. doi:10.1016/j.nlm.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  49. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256, Review

    Article  CAS  PubMed  Google Scholar 

  51. Savio LE, Vuaden FC, Piato AL, Bonan CD, Wyse AT (2012) Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 36(2):258–263. doi:10.1016/j.pnpbp.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  52. Savio LE, Vuaden FC, Rosemberg DB, Bogo MR, Bonan CD, Wyse AT (2012) Long-term proline exposure alters nucleotide catabolism and ectonucleotidase gene expression in zebrafish brain. Metab Brain Dis 27(4):541–554. doi:10.1007/s11011-012-9321-y

    Article  CAS  PubMed  Google Scholar 

  53. Savio LE, Vuaden FC, Kist LW, Pereira TC, Rosemberg DB, Bogo MR, Bonan CD, Wyse AT (2013) Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs. Neuroscience 250:121–128. doi:10.1016/j.neuroscience.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  54. Vuaden FC, Savio LE, Piato AL, Pereira TC, Vianna MR, Bogo MR, Bonan CD, Wyse AT (2012) Long-term methionine exposure induces memory impairment on inhibitory avoidance task and alters acetylcholinesterase activity and expression in zebrafish (Danio rerio). Neurochem Res 37(7):1545–1553. doi:10.1007/s11064-012-0749-6

    Article  CAS  PubMed  Google Scholar 

  55. Appelbaum L, Skariah G, Mourrain P, Mignot E (2007) Comparative expression of P2X receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish. Brain Res 1174:66–75

    Article  CAS  PubMed  Google Scholar 

  56. Rosemberg DB, Rico EP, Langoni AS, Spinelli JT, Pereira TC, Dias RD, Souza DO, Bonan CD, Bogo MR (2010) NTPDase family in zebrafish: nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart. Comp Biochem Physiol B Biochem Mol Biol 155(3):230–240. doi:10.1016/j.cbpb.2009.11.005

    Article  PubMed  Google Scholar 

  57. Rico EP, Senger MR, da G. Fauth M, Dias RD, Bogo MR, Bonan CD (2003) ATP and ADP hydrolysis in brain membranes of zebrafish (Danio rerio). Life Sci 73:2071–2082

    Article  CAS  PubMed  Google Scholar 

  58. Senger MR, Rico EP, Dias RD, Bogo MR, Bonan CD (2004) Ecto-5′-nucleotidase activity in brain membranes of zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 139:203–207

    Article  PubMed  Google Scholar 

  59. Senger MR, Rico EP, de Bem AM, Frazzon AP, Dias RD, Bogo MR, Bonan CD (2006) Exposure to Hg2+ and Pb2+ changes NTPDase and ecto-5′-nucleotidase activities in central nervous system of zebrafish (Danio rerio). Toxicology 226:229–237

    Article  CAS  PubMed  Google Scholar 

  60. Rico EP, Rosemberg DB, Senger MR, de Arizi MB, Bernardi GF, Dias RD, Bogo MR, Bonan CD (2006) Methanol alters ectonucleotidases and acetylcholinesterase in zebrafish brain. Neurotoxicol Teratol 28:489–496

    Article  CAS  PubMed  Google Scholar 

  61. Boué-Grabot E, Akimenko MA, Séguéla P (2000) Unique functional properties of a sensory neuronal P2X ATP-gated channel from zebrafish. J Neurochem 75:1600–1607

    Article  PubMed  Google Scholar 

  62. Kucenas S, Li Z, Cox JA, Egan TM, Voigt MM (2003) Molecular characterization of the zebrafish P2X receptor subunit gene family. Neuroscience 121:935–945

    Article  CAS  PubMed  Google Scholar 

  63. Boehmler W, Petko J, Woll M, Frey C, Thisse B, Thisse C, Canfield VA, Levenson R (2009) Identification of zebrafish A2 adenosine receptors and expression in developing embryos. Gene Expr Patterns 9:144–151. doi:10.1016/j.gep.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  64. Capiotti KM, Menezes FP, Nazario LR, Pohlmann JB, de Oliveira GM, Fazenda L, Bogo MR, Bonan CD, Da Silva RS (2011) Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio). Neurotoxicol Teratol 33(6):680–685. doi:10.1016/j.ntt.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  65. Westerfield M (2007) The zebrafish book, 5th edn. University of Oregon Press, Eugene

    Google Scholar 

  66. Zenki KC, Mussulini BH, Rico EP, de Oliveira DL, Rosemberg DB (2014) Effects of ethanol and acetaldehyde in zebrafish brain structures: an in vitro approach on glutamate uptake and on toxicity-related parameters. Toxicol In Vitro 28(5):822–828. doi:10.1016/j.tiv.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  67. Rico EP, de Oliveira DL, Rosemberg DB, Mussulini BH, Bonan CD, Dias RD, Wofchuk S, Souza DO, Bogo MR (2010) Expression and functional analysis of Na(+)-dependent glutamate transporters from zebrafish brain. Brain Res Bull 81(4–5):517–523. doi:10.1016/j.brainresbull.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  68. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  69. Barnes JM, Murphy PA, Kirkham D, Henley JM (1993) Interaction of guanine nucleotides with [3H]kainate and 6-[3H]cyano-7-nitroquinoxaline-2,3-dione binding in goldfish brain. J Neurochem 61:1685–1691

    Article  CAS  PubMed  Google Scholar 

  70. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  71. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  72. Dhanasiri AK, Fernandes JM, Kiron V (2012) Glutamine synthetase activity and the expression of three glul paralogues in zebrafish during transport. Comp Biochem Physiol B Biochem Mol Biol 163(3–4):274–284. doi:10.1016/j.cbpb.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  73. Stefanello FM, Kreutz F, Scherer EB, Breier AC, Vianna LP, Trindade VM, Wyse ATS (2007) Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 25:473–477

    Article  CAS  PubMed  Google Scholar 

  74. Le Feuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447:261–269

    Article  PubMed  Google Scholar 

  75. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590. doi:10.1038/nrd2605, Review

    Article  CAS  PubMed  Google Scholar 

  76. Fredholm BB (2014) Adenosine-a physiological or pathophysiological agent? J Mol Med (Berl) 92(3):201–206. doi:10.1007/s00109-013-1101-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Conflict of Interest

The authors report no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda Cenci Vuaden or Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuaden, F.C., Savio, L.E.B., Rico, E.P. et al. Methionine Exposure Alters Glutamate Uptake and Adenine Nucleotide Hydrolysis in the Zebrafish Brain. Mol Neurobiol 53, 200–209 (2016). https://doi.org/10.1007/s12035-014-8983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8983-3

Keywords

Navigation