Skip to main content

Advertisement

Log in

Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM, Feldman EL (2011) Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 6(2):201–213

    Article  PubMed  PubMed Central  Google Scholar 

  2. Amemori T, Romanyuk N, Jendelova P, Herynek V, Turnovcova K, Prochazka P, Kapcalova M, Cocks G et al (2013) Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res Ther 4(3):68

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ulrich D, Muralitharan R, Gargett CE (2013) Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 13(10):1387–1400

    Article  CAS  PubMed  Google Scholar 

  4. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS (2011) Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med 15(4):747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bagher Z, Ebrahimi-Barough S, Azami M, Mirzadeh H, Soleimani M, Ai J, Nourani MR, Joghataei MT (2015) Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells. In Vitro Cell Dev Biol Anim 51(9):987–994

  6. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56

    Article  CAS  PubMed  Google Scholar 

  7. Navaei-Nigjeh M, Amoabedini G, Noroozi A, Azami M, Asmani MN, Ebrahimi-Barough S, Saberi H, Ai A et al (2014) Enhancing neuronal growth from human endometrial stem cells derived neuron-like cells in three-dimensional fibrin gel for nerve tissue engineering. J Biomed Mater Res A 102(8):2533–2543

    Article  PubMed  Google Scholar 

  8. Ebrahimi-Barough S, Kouchesfahani HM, Ai J, Massumi M (2013) Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci 51(2):265–273

    Article  CAS  PubMed  Google Scholar 

  9. Jalali Tehrani H, Parivar K, Ai J, Kajbafzadeh A, Rahbarghazi R, Hashemi M, Sadeghizadeh M (2014) Effect of dexamethasone, insulin and EGF on the myogenic potential on human endometrial stem cell. Iran J Pharm Res 13(2):659–64

    PubMed  PubMed Central  Google Scholar 

  10. Ebrahimi-Barough S, Massumi M, Kouchesfahani HM, Ai J (2013) Derivation of pre-oligodendrocytes from human endometrial stromal cells by using overexpression of microRNA 338. J Mol Neurosci 51(2):337–343

    Article  CAS  PubMed  Google Scholar 

  11. Asmani MN, Ai J, Amoabediny G, Noroozi A, Azami M, Ebrahimi-Barough S, Navaei-Nigjeh M, Ai A et al (2013) Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel. Cell Biol Int 37(12):1340–1349

    Article  CAS  PubMed  Google Scholar 

  12. Ai J, Shahverdi AR, Barough SE, Kouchesfehani HM, Heidari S, Roozafzoon R, Verdi J, Khoshzaban A (2012) Derivation of adipocytes from human endometrial stem cells (EnSCs). J Reprod Infertil 13(3):151–157

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Azami M, Ai J, Ebrahimi-Barough S, Farokhi M, Fard SE (2013) In vitro evaluation of biomimetic nanocomposite scaffold using endometrial stem cell derived osteoblast-like cells. Tissue Cell 45(5):328–337

    Article  CAS  PubMed  Google Scholar 

  14. Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N, Ebrahimi-Barough S, Karimi R et al (2014) A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int 38(10):1174–1182

    Article  CAS  PubMed  Google Scholar 

  15. Smith LA, Liu X, Ma PX (2008) Tissue engineering with nano-fibrous scaffolds. Soft Matter 4(11):2144–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Straley KS, Foo CW, Heilshorn SC (2010) Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 27(1):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gamez Sazo RE, Maenaka K, Gu W, Wood PM, Bunge MB (2012) Fabrication of growth factor- and extracellular matrix-loaded, gelatin-based scaffolds and their biocompatibility with Schwann cells and dorsal root ganglia. Biomaterials 33(33):8529–8539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spilker MH, Yannas IV, Kostyk SK, Norregaard TV, Hsu HP, Spector M (2001) The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Restor Neurol Neurosci 18(1):23–38

    CAS  PubMed  Google Scholar 

  19. Taylor SJ, Sakiyama-Elbert SE (2006) Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. J Control Release 116(2):204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ebrahimi-Barough S, Norouzi Javidan A, Saberi H, Joghataei MT, Rahbarghazi R, Mirzaei E, Faghihi F, Shirian S et al (2015) Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol 52(3):1704–1713

    Article  CAS  PubMed  Google Scholar 

  21. Bagher Z, Ebrahimi-Barough S, Azami M, Safa M, Joghataei MT (2016) Cellular activity of Wharton’s Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds. J Biomed Mater Res A 104(1):218–226

    Article  PubMed  Google Scholar 

  22. Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, et al (2015) Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers. Mol Neurobiol. doi:10.1007/s12035-015-9199-x

  23. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150. doi:10.1146/annurev.pathol.4.110807.092311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F (2014) The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis 5:e1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klinz F, Bloch W, Addicks K, Hescheler J (1999) Inhibition of phosphatidylinositol-3-kinase blocks development of functional embryonic cardiomyocytes. Exp Cell Res 247:79–83

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, He W, Bian H, Liu C, Li S (2012) Small molecule induction of neural-like cells from bone marrow-mesenchymal stem cells. J Cell Biochem 113(5):1527–1536

    CAS  PubMed  Google Scholar 

  27. Shrestha B, Coykendall K, Li Y, Moon A, Priyadarshani P, Yao L (2014) Repair of injured spinal cord using biomaterial scaffolds and stem cells. Stem Cell Res Ther 5(4):91

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ebrahimi-Barough S, Hoveizi E, Norouzi Javidan A, Ai J (2015) Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J Biomed Mater Res A 103(8):2621–2627

    Article  CAS  PubMed  Google Scholar 

  29. Bayat N, Ebrahimi-Barough S, Ardakan MM, Ai A, Kamyab A, Babaloo H, Ai J (2015) Differentiation of human endometrial stem cells into Schwann cells in fibrin hydrogel as 3D culture. Mol Neurobiol. doi:10.1007/s12035-015-9574-7

  30. Mirzaei E, Ai J, Ebrahimi-Barough S, Verdi J, Ghanbari H, Faridi-Majidi R (2015) The differentiation of human endometrial stem cells into neuron-like cells on electrospun PAN-derived carbon nanofibers with random and aligned topographies. Mol Neurobiol. doi:10.1007/s12035-015-9410-0

  31. Harirchian MH, Tekieh AH, Modabbernia A, Aghamollaii V, Tafakhori A, Ghaffarpour M, Sahraian MA, Naji M et al (2012) Serum and CSF PDGF-AA and FGF-2 in relapsing-remitting multiple sclerosis: a case-control study. Eur J Neurol 19(2):241–247

    Article  CAS  PubMed  Google Scholar 

  32. Masoudian N, Riazi GH, Afrasiabi A, Modaresi SM, Dadras A, Rafiei S, Yazdankhah M, Lyaghi A et al (2015) Variations of glutamate concentration within synaptic cleft in the presence of electromagnetic fields: an artificial neural networks study. Neurochem Res 40(4):629–642

    Article  CAS  PubMed  Google Scholar 

  33. Mashayekhi F, Azari M, Moghadam LM, Yazdankhah M, Naji M, Salehi Z (2009) Changes in cerebrospinal fluid nerve growth factor levels during chick embryonic development. J Clin Neurosci 16(10):1334–1337

    Article  CAS  PubMed  Google Scholar 

  34. Schmitt F, Hussain G, Dupuis L, Loeffler JP, Henriques A (2014) A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front Cell Neurosci 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  35. El-Akabawy G, Medina LM, Jeffries A, Price J, Modo M (2011) Purmorphamine increases DARPP-32 differentiation in human striatal neural stem cells through the Hedgehog pathway. Stem Cells Dev 20(11):1873–1887

    Article  CAS  PubMed  Google Scholar 

  36. Faghihi F, Mirzaei E, Ai J, Lotfi A, Sayahpour FA, Ebrahimi-Barough S, Joghataei MT (2015) Differentiation potential of human chorion-derived mesenchymal stem cells into motor neuron-like cells in two- and three-dimensional culture systems. Mol Neurobiol. doi:10.1007/s12035-015-9172-8

  37. Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SM, Derakhshan MA, Arjmand B, Ai J (2015) Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(epsilon-caprolactone) scaffold. Mol Neurobiol. doi:10.1007/s12035-015-9442-5

  38. Hackett JM, Dang TT, Tsai EC, Cao X (2010) Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials 3(6):3714–3728

    Article  CAS  Google Scholar 

  39. Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S (2008) Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 19(45):455102

    Article  PubMed  Google Scholar 

  40. Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199(2):174–180

    Article  CAS  PubMed  Google Scholar 

  41. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6(4):909–919

    Article  CAS  PubMed  Google Scholar 

  42. Romanelli RJ, Mahajan KR, Fulmer CG, Wood TL (2009) Insulin-like growth factor-I-stimulated Akt phosphorylation and oligodendrocyte progenitor cell survival require cholesterol-enriched membranes. J Neurosci Res 87(15):3369–3377

    Article  CAS  PubMed  Google Scholar 

  43. Tang J, Wang J, Kong X, Yang J, Guo L, Zheng F, Zhang L, Huang Y et al (2009) Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res 315(20):3521–3531

    Article  CAS  PubMed  Google Scholar 

  44. Hsu CH, Gao M, Chen CL, Yeh PY, Cheng AL (2005) Inhibitors of epidermoid growth factor receptor suppress cell growth and enhance chemosensitivity of nasopharyngeal cancer cells in vitro. Oncology 68(4-6):538–547

    Article  CAS  PubMed  Google Scholar 

  45. Inoue T, Kagawa T, Fukushima M, Shimizu T, Yoshinaga Y, Takada S, Tanihara H, Taga T (2006) Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin. Stem cells (Dayton, Ohio) 24(1):95–104

    Article  CAS  Google Scholar 

  46. Holmes T, O'Brien TA, Knight R, Lindeman R, Shen S, Song E, Symonds G, Dolnikov A (2008) Glycogen synthase kinase-3beta inhibition preserves hematopoietic stem cell activity and inhibits leukemic cell growth. Stem cells (Dayton, Ohio) 26(5):1288–1297

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tehran University of Medical Sciences to support this research with grant number “93-04-159-28027”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Somayeh Ebrahimi-Barough or Jafar Ai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi-Barough, S., Hoveizi, E., Yazdankhah, M. et al. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds. Mol Neurobiol 54, 2547–2554 (2017). https://doi.org/10.1007/s12035-016-9828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9828-z

Keywords

Navigation