Skip to main content
Log in

Inhibition of Neuroinflammation and Mitochondrial Dysfunctions by Carbenoxolone in the Rotenone Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

α-Synuclein aggregation contributes to the Parkinson’s disease (PD) pathology in multiple ways—the two most important being the activation of neuroinflammation and mitochondrial dysfunction. Our recent studies have shown the beneficial effects of a heat shock protein (HSP) inducer, carbenoxolone (Cbx), in reducing the aggregation of α-synuclein in a rotenone-based rat model of PD. The present study was designed to explore its ability to attenuate the α-synuclein-mediated alterations in neuroinflammation and mitochondrial functions. The PD model was generated by the rotenone administration (2 mg/kg b.wt.) to the male SD rats for a period of 5 weeks. Cbx (20 mg/kg b.wt.) co-administration was seen to reduce the activation of astrocytes incited by rotenone. Subsequently, the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β was inhibited. Further, the expression level of various inflammatory mediators such as COX-2, iNOS, and NF-κB was also reduced following Cbx co-treatment. Cbx was also shown to reduce the rotenone-induced decline in activity of mitochondrial complexes-I, -II, and -IV. Protection of mitochondrial functions and reduction in neuroinflammation lead to the lesser production of ROS and subsequently reduced oxidative stress. This was reflected by the increase in both the cytosolic and mitochondrial GSH levels as well as SOD activity during Cbx co-treatment. Thus, Cbx reduces the inflammatory response and improves the mitochondrial dysfunctions by reducing α-synuclein aggregation. In addition, it also reduces the associated oxidative stress. Due to its ability to target the multiple pathways implicated in the PD, Cbx can serve as a highly beneficial prophylactic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cookson MR (2009) alpha-Synuclein and neuronal cell death. Mol Neurodegener 4:9

    Article  PubMed Central  PubMed  Google Scholar 

  2. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22

    Article  CAS  PubMed  Google Scholar 

  3. Ferrer I (2009) Early involvement of the cerebral cortex in Parkinson’s disease: convergence of multiple metabolic defects. Prog Neurobiol 88:89–103

    Article  CAS  PubMed  Google Scholar 

  4. Ma QL, Chan P, Yoshii M, Uéda K (2003) α-Synuclein aggregation and neurodegenerative diseases. J Alzheimers Dis 5(2):139–148

    CAS  PubMed  Google Scholar 

  5. Lee HJ, Kim C, Lee SJ (2010) Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev 3(4):283–287

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sekiyama K, Sugama S, Fujita M, Sekigawa A, Takamatsu Y, Waragai M, Takenouchi T, Hashimoto M (2012) Neuroinflammation in Parkinson’s disease and related disorders: a lesson from genetically manipulated mouse models of α-synucleinopathies. Park Dis 2012:271732

    Google Scholar 

  7. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542

    Article  CAS  PubMed  Google Scholar 

  8. Protter D, Lang C, Cooper AA (2012) αSynuclein and mitochondrial dysfunction: a pathogenic partnership in Parkinson’s disease? Park Dis 2012:829207

    Google Scholar 

  9. Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, Nuscher B, Bartels T, Giese A, Beyer K, Eimer S, Winklhofer KF, Haass C (2010) Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29(20):3571–3589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B, Wakabayashi J, Sesaki H, Cheng Y, Finkbeiner S, Nussbaum RL, Masliah E, Edwards RH (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J Biol Chem 286(23):20710–20726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Banerjee K, Sinha M, Pham Cle L, Jana S, Chanda D, Cappai R, Chakrabarti S (2010) α-Synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson’s disease. FEBS Lett 584(8):1571–1576

    Article  CAS  PubMed  Google Scholar 

  12. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein DC (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chen L, Jin J, Davis J, Zhou Y, Wang Y, Liu J, Lockhart PJ, Zhang J (2007) Oligomeric alpha-synuclein inhibits tubulin polymerization. Biochem Biophys Res Commun 356:548–553

    Article  CAS  PubMed  Google Scholar 

  14. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10(5):411–418

    Article  CAS  PubMed  Google Scholar 

  15. Koppula S, Kumar H, Kim IS, Choi DK (2012) Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson’s disease. Mediat Inflamm 2012:823902

    Article  Google Scholar 

  16. Migliore L, Coppedè F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 674(1–2):73–84

    Article  CAS  PubMed  Google Scholar 

  17. Franco L, Manara P, Erbetti I, Velo GP (1993) Anti-ulcer activity of carbenoxolone and ISF 3401 on PGE2 release in rat gastric mucosa. Pharmacol Res 27(2):141–150

    Article  CAS  PubMed  Google Scholar 

  18. Thakur P, Nehru B (2013) Long-term heat shock proteins (HSPs) induction by carbenoxolone improves hallmark features of Parkinson’s disease in a rotenone-based model. Neuropharmacology 79C:190–200

    Google Scholar 

  19. Kilpatrick K, Novoa JA, Hancock T, Guerriero CJ, Wipf P, Brodsky JL, Segatori L (2013) Chemical induction of Hsp70 reduces α-synuclein aggregation in neuroglioma cells. ACS Chem Biol 8(7):1460–1468

    Article  CAS  PubMed  Google Scholar 

  20. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179(1):9–16

    Article  CAS  PubMed  Google Scholar 

  21. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  CAS  PubMed  Google Scholar 

  22. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria, implications for Parkinson’s disease. J Neurochem 73(3):1127–1137

    Article  CAS  PubMed  Google Scholar 

  23. Sood PK, Nahar U, Nehru B (2011) Curcumin attenuates aluminum-induced oxidative stress and mitochondrial dysfunction in rat brain. Neurotox Res 20(4):351–361

    Article  CAS  PubMed  Google Scholar 

  24. Khanna P, Nehru B (2007) Antioxidant enzymatic system in neuronal and glial cells enriched fractions of rat brain after aluminum exposure. Cell Mol Neurobiol 27(7):959–969

    Article  CAS  PubMed  Google Scholar 

  25. Paxinos GW, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, Oxford

    Google Scholar 

  26. Pearse AGE (1968) Histochemical, theoretical and applied, 3rd edn. Churchill Livingstone, London, p 660

    Google Scholar 

  27. Thakur P, Nehru B (2013) Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience 231:420–431

    Article  CAS  PubMed  Google Scholar 

  28. Tórsdóttir G, Kristinsson J, Sveinbjörnsdóttir S, Snaedal J, Jóhannesson T (1999) Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacol Toxicol 85(5):239–243

    Article  PubMed  Google Scholar 

  29. Verma R, Nehru B (2009) Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson’s disease. Neurochem Int 55(6):369

    Article  CAS  PubMed  Google Scholar 

  30. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355

    Article  CAS  PubMed  Google Scholar 

  31. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  32. Shen HY, He JC, Wang Y, Huang QY, Chen JF (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280(48):39962–39969

    Article  CAS  PubMed  Google Scholar 

  33. Pan T, Li X, Xie W, Jankovic J, Le W (2005) Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS Lett 579(30):6716–6720

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Qin ZH, Leng Y, Wang Y, Jin X, Chase TN, Bennett MC (2002) Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells. J Neurochem 83(5):1094–1102

    Article  CAS  PubMed  Google Scholar 

  35. Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10(12):930–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Matsuda H, Kagerura T, Toguchida I, Ueda H, Morikawa T, Yoshikawa M (2000) Inhibitory effects of sesquiterpenes from bay leaf on nitric oxide production in lipopolysaccharide-activated macrophages: structure requirement and role of heat shock protein induction. Life Sci 66(22):2151–2157

    Article  CAS  PubMed  Google Scholar 

  37. Mehlen P, Kretz-Remy C, Préville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J 15(11):2695–2706

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100(6):1469–1479

    CAS  PubMed  Google Scholar 

  39. Di Filippo M, Chiasserini D, Tozzi A, Picconi B, Calabresi P (2010) Mitochondria and the link between neuroinflammation and neurodegeneration. J Alzheimers Dis 20(Suppl 2):S369–S379

    PubMed  Google Scholar 

  40. Ferger AI, Campanelli L, Reimer V, Muth KN, Merdian I, Ludolph AC, Witting A (2010) Effects of mitochondrial dysfunction on the immunological properties of microglia. J Neuroinflammation 7:45

    Article  PubMed Central  PubMed  Google Scholar 

  41. Dobbin CA, Smith NC, Johnson AM (2002) Heat shock protein 70 is a potential virulence factor in murine toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide. J Immunol 169(2):958–965

    Article  CAS  PubMed  Google Scholar 

  42. Hauser GJ, Dayao EK, Wasserloos K, Pitt BR, Wong HR (1996) HSP induction inhibits iNOS mRNA expression and attenuates hypotension in endotoxin-challenged rats. Am J Physiol 271(6 Pt 2):H2529–H2535

    CAS  PubMed  Google Scholar 

  43. Jacquier-Sarlin MR, Fuller K, Dinh-Xuan AT, Richard MJ, Polla BS (1994) Protective effects of hsp70 in inflammation. Experientia 50(11–12):1031–1038

    Article  CAS  PubMed  Google Scholar 

  44. Gareri P, Condorelli D, Belluardo N, Russo E, Loiacono A, Barresi V, Trovato-Salinaro A, Mirone MB, Ferreri Ibbadu G, De Sarro G (2004) Anticonvulsant effects of carbenoxolone in genetically epilepsy prone rats (GEPRs). Neuropharmacology 47(8):1205–1216

    Article  CAS  PubMed  Google Scholar 

  45. Kielian T (2008) Glial connexins and gap junctions in CNS inflammation and disease. J Neurochem 106(3):1000–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kawasaki A, Hayashi T, Nakachi K, Trosko JE, Sugihara K, Kotake Y, Ohta S (2009) Modulation of connexin 43 in rotenone-induced model of Parkinson’s disease. Neuroscience 160(1):61–68

    Article  CAS  PubMed  Google Scholar 

  47. Kawashima D, Asai M, Katagiri K, Takeuchi R, Ohtsuka K (2009) Reinvestigation of the effect of carbenoxolone on the induction of heat shock proteins. Cell Stress Chaperones 14(5):535–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was carried out with the funds provided by Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimla Nehru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Nehru, B. Inhibition of Neuroinflammation and Mitochondrial Dysfunctions by Carbenoxolone in the Rotenone Model of Parkinson’s Disease. Mol Neurobiol 51, 209–219 (2015). https://doi.org/10.1007/s12035-014-8769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8769-7

Keywords

Navigation