Skip to main content
Log in

Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The abuse of the illicit drug methamphetamine (METH) is a major concern because it can cause terminal degeneration and neuronal cell death in the brain. METH-induced cell death occurs via processes that resemble apoptosis. In the present review, we discuss the role of various apoptotic events in the causation of METH-induced neuronal apoptosisin vitro andin vivo. Studies using comprehensive approaches to gene expression profiling have allowed for the identification of several genes that are up-regulated or down-regulated after an apoptosis-inducing dose of the drug. Further experiments have also documented the fact that the drug can cause demise of striatal enkephalinergic neurons by cross-talks between mitochondria-, endo-plasmic reticulum- and receptor-mediated apoptotic events. These neuropathological observations have also been reported in models of drug-induced neuroplastic alterations used to mimic drug addiction (Nestler, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali SF and Y Itzhak(1998) Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice.Ann. NYAcad. Sci. 844, 122–130.

    Article  CAS  Google Scholar 

  • Allen RT, MW Cluckand DK Agrawal (1998) Mechanisms controlling cellular suicide: role of Bcl-2 and caspases.Cell. Mol. Life Sci. 54, 427–445.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma M, T Hayashi, SV Ordonez, N Ogawa and JL Cadet(2000) Direct interactions of methamphetamine with the nucleus.Brain Res. Mol. Brain Res. 80, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Axt KJand ME Molliver (1991) Immunocytochemical evidence for meth-amphetamine-induced serotonergic axon loss in the rat brain.Synapse 9, 302–313.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL and C Brannock (1998) Free radicals and the pathobiology ofbrain dopamine systems.Neurochem. Int. 32, 117–131.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, P Sheng, S Ali, R Rothman, E Carlson and C Epstein (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice.J. Neurochem. 62, 380–383.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, SV Ordonez and JV Ordonez (1997) Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.Synapse 25, 176–184.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, S Jayanthi, MT McCoy, M Vawterand B Ladenheim (2001) Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array.Synapse 41, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, MT McCoy and B Ladenheim (2002) Distinct gene expression signatures in the striata of wild-type and heterozygous c-fos knockout mice following methamphetamine administration: evidence from cDNA array analyses.Synapse 44, 211–226.

    Article  PubMed  CAS  Google Scholar 

  • Callahan BT, BJ Cord, J Yuan, UD McCann and GA Ricaurte (2001) Inhibitors of Na(+)/H(+) and Na(+)/Ca(2+) exchange potentiate methamphetamine-induced dopamine neurotoxicity: possible role of ionic dysregulation in methamphetamine neurotoxicity.J. Neurochem. 77, 1348–1362.

    Article  PubMed  CAS  Google Scholar 

  • Cappon GD, C Pu and CV Vorhees (2000) Time-course of methamphet-amine-induced neurotoxicity in rat caudate-putamen after single-dose treatment.Brain Res. 863, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Chan P, DA Di Monte, JJ Luo, LE DeLanney, I Irwin and JW Langston (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity.J. Neurochem. 62, 2484–2487.

    Article  PubMed  CAS  Google Scholar 

  • Chapman DE, GR Hanson, RP Kesnerand KA Keefe (2001) Long-term changes in basal ganglia function after a neurotoxic regimen of metham-phetamine.J. Pharmacol. Exp. Ther. 296, 520–527.

    PubMed  CAS  Google Scholar 

  • Chynn KY(1968) Technique for experimental embolization of cerebral arteries and repetitive selective internal carotid arteriography in dogs.Invest. Radiol. 3, 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM(1997) Caspases: the executioners of apoptosis.Biochem. J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  • Conci F, V D’Angelo, D Tampieri and G Vecchi(1988) Intracerebral hemorrhage and angiographic beading following amphetamine abuse.Ital. J. Neurol. Sci. 9, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Crabtree GR and EN Olson (2002) NFAT signaling: choreographing the social lives of cells.Cell 109 (Suppl.), S67-S79.

    Article  PubMed  CAS  Google Scholar 

  • De Vito MJ and GC Wagner (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals.Neuropharmacology 28, 1145–1150.

    Article  PubMed  Google Scholar 

  • Deng X and JL Cadet (2000) Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice.Brain Res. Mol. Brain Res. 83, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Deng X, B Ladenheim, LI Tsao and JL Cadet(1999) Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity.J. Neurosci. 19, 10107–10115.

    PubMed  CAS  Google Scholar 

  • Deng X, Y Wang, J Chou and JL Cadet (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method.Brain Res. Mol. Brain Res. 93, 64–69.

    Article  PubMed  CAS  Google Scholar 

  • Deng X, NS Cai, MT McCoy, W Chen, MA Trush and JL Cadet (2002a) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway.Neuropharmacology 42, 837–845.

    Article  CAS  Google Scholar 

  • Deng X, S Jayanthi, B Ladenheim, IN Krasnova and JL Cadet (2002b) Mice with partial deficiency of c-Jun show attenuation of methamphetamine-induced neuronal apoptosis.Mol. Pharmacol. 62, 993–1000.

    Article  CAS  Google Scholar 

  • Derijard B, J Raingeaud, T Barrett, IH Wu, J Han, RJ Ulevitch and RJ Davis (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms.Science 267, 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Eisch AJ, LC Schmued and JF Marshall (1998) Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine.Synapse 30, 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Ernst T, L Chang, M Leonido-Yee and O Speck (2000) Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study.Neurology 54, 1344–1349.

    PubMed  CAS  Google Scholar 

  • Ferri KF and G Kroemer(2001) Organelle-specific initiation of cell death pathways.Nat. Cell. Biol. 3, E255-E263.

    Article  PubMed  CAS  Google Scholar 

  • Frey K, M Kilbourn and T Robinson (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine.Eur. J. Pharmacol. 334, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Fukui K, T Nakajima, H Kariyama, A Kashiba, N Kato, I Tohyama and H Kimura (1989) Selective reduction of serotonin immunoreactivity in some forebrain regions of rats induced by acute methamphetamine treatment; quantitative morphometric analysis by serotonin immunocyto-chemistry.Brain Res. 482, 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura M, GD Cappon, C Pu, HW Broening and CV Vorhees (1998) A single dose model of methamphetamine-induced neurotoxicity in rats: effects on neostriatal monoamines and glial fibrillary acidic protein.Brain Res. 806, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga Kand E Miyamoto (1998) Role of MAP kinase in neurons,Mol. Neurobiol. 16, 79–95.

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli F, RR Gainetdinov, KJ Valenzano and MG Caron (1998) Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter.J. Neurosci. 18, 4861–4869.

    PubMed  CAS  Google Scholar 

  • Fumagalli F, RR Gainetdinov, YM Wang, KJ Valenzano, GW Millerand MG Caron(1999) Increased methamphetamine neurotoxicity in hetero- zygous vesicular monoamine transporter 2 knock-out mice.J. Neurosci. 19, 2424–2431.

    PubMed  CAS  Google Scholar 

  • Gamaley IA and IV Klyubin (1999) Roles of reactive oxygen species: signaling and regulation of cellular functions.Int. Rev. Cytol. 188, 203–255.

    Article  PubMed  CAS  Google Scholar 

  • Giovanni A, LP Liang, TG Hastings and MJ Zigmond (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine.J. Neurochem. 64, 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  • Gluck MR, LY Moy, E Jayatilleke, KA Hogan, L Manzino and PK Sonsalla (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment.J. Neurochem. 79, 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, M Asanuma and JL Cadet(1998) Superoxide radicals are mediators of the effects of methamphetamine onZif268 (Egr-1,NGFI-A) in the brain: evidence from using CuZn superoxide dismutase transgenic mice.Brain Res. Mol. Brain Res. 58, 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss A and JW Gibb (1980a) Blockade of methamphetamine-induced depression of tyrosine hydroxylase by GABA transaminase inhibitors.Eur. J. Pharmacol. 66, 201–205.

    Article  CAS  Google Scholar 

  • Hotchkiss AJ and JW Gibb (1980b) Long-term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain.J. Pharmacol. Exp. Ther. 214, 257–262.

    CAS  Google Scholar 

  • Imam SZ, J el-Yazal, GD Newport, Y Itzhak, JL Cadet, W Slikker Jr and SF Ali (2001) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants andperoxynitrite decomposition catalysts.Ann. NYAcad. Sci. 939, 366–380.

    Article  CAS  Google Scholar 

  • Itzhak Y and SF Ali(1996) The neuronal nitric oxide synthase inhibitor, 7- nitroindazole, protects against methamphetamine-induced neurotoxicityin vivo. J. Neurochem. 67, 1770–1773.

    Article  CAS  Google Scholar 

  • Janicke RU, P Ng, ML Sprengart and AG Porter (1998) Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis.J. Biol. Chem. 273, 15540–15545.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, B Ladenheim and JL Cadet (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice.Ann. NYAcad. Sci. 844, 92–102.

    Article  CAS  Google Scholar 

  • Jayanthi S, X Deng, M Bordelon, MT McCoy and JL Cadet(2001) Methamphetamine causes differential regulation of pro-death and anti-deathBcl-2 genes in the mouse neocortex.FASEB J. 15, 1745–1752.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, M TMcCoy, B Ladenheim and JL Cadet(2002)Methamphetamine causes coordinate regulation of SRC, cas, crk, and the junN-terminal kinase-jun pathway.Mol. Pharmacol. 61, 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, X Deng, PA Noailles, B Ladenheim and JL Cadet (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades.FASEB J. 18, 238–251.

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi S, X Deng, B Ladenheim, MT McCoy, A Cluster, NS Cai and JL Cadet (2005) Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis.Proc. Natl. Acad. Sci. USA 102, 868–873.

    Article  PubMed  CAS  Google Scholar 

  • Karin M (1991) Signal transduction and gene control,Curr. Opin. Cell. Biol. 3, 467–473.

    Article  PubMed  CAS  Google Scholar 

  • Karin M(1995) The regulation ofAP-1 activity by mitogen-activated protein kinases.J.Biol. Chem. 270, 16483–16486.

    PubMed  CAS  Google Scholar 

  • Kluck RM, E Bossy-Wetzel, DR Green and DD Newmeyer (1997) The release of cytochromec from mitochondria: a primary site for Bcl-2 regulation of apoptosis.Science 275, 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  • Kogan FJ, WK Nichols and JW Gibb (1976) Influence of methamphetamine on nigral and striatal tyrosine hydroxylase activity and on striatal dopa-mine levels.Eur. J. Pharmacol. 36, 363–371.

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer SJ, JR Shutter, DJ Veis, DE Merry and ZN Oltvai (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death.Semin. Cancer Biol. 4, 327–332.

    PubMed  CAS  Google Scholar 

  • Kothakota S, T Azuma, C Reinhard, A Klippel, J Tang, K Chu, TJ McGarry, MW Kirschner, K Koths, DJ Kwiatkowski and LT Williams (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis.Science 278, 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Kramer JC, VS Fischman and DC Littlefield(1967) Amphetamine abuse. Pattern and effects of high doses taken intravenously.JAMA 201, 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Lan KC, YF Lin, FC Yu, CS Lin and P Chu(1998) Clinical manifestations and prognostic features of acute methamphetamine intoxication.J. Formos. Med. Assoc. 97, 528–533.

    PubMed  CAS  Google Scholar 

  • LaVoie MJand TG Hastings(1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of meth-amphetamine: evidence against a role for extracellular dopamine.J. Neurosci. 19, 1484–1491.

    PubMed  CAS  Google Scholar 

  • Leist Mand P Nicotera(1998) Apoptosis, excitotoxicity, and neuropathology.Exp. Cell. Res. 239, 183–201.

    Article  PubMed  CAS  Google Scholar 

  • Li-Weber M, O Laur and PH Krammer (1999) Novel Egr/NF-AT composite sites mediate activation of the CD95 (APO-1/Fas) ligand promoter in response to T cell stimulation.Eur. J. Immunol. 29, 3017–3027.

    Article  PubMed  CAS  Google Scholar 

  • Macian F, C Garcia-Rodriguez and A Rao (2000) Gene expression elicited by NFAT in the presence or absence of cooperative recruitment ofFos and Jun.Embo J. 19, 4783–4795.

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ, G Vosmer and LS Seiden (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons.Brain Res. 513, 274–279.

    Article  PubMed  CAS  Google Scholar 

  • Mashima T, M Naito and T Tsuruo (1999) Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis.Oncogene 18, 2423–2430.

    Article  PubMed  CAS  Google Scholar 

  • McCullough KD, JL Martindale, LO Klotz, TY Aw and NJ Holbrook (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down- regulating Bcl2 and perturbing the cellular redox state.Mol. Cell. Biol. 21, 1249–1259.

    Article  PubMed  CAS  Google Scholar 

  • Minden A, A Lin, T Smeal, B Derijard, M Cobb, R Davis and M Karin (1994) c-JunN-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases.Mol. Cell. Biol. 14, 6683–6688.

    PubMed  CAS  Google Scholar 

  • Moriguchi T, F Toyoshima, N Masuyama, H Hanafusa, Y Gotoh and E Nishida (1997) A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses.Embo J. 16, 7045–7053.

    Article  PubMed  CAS  Google Scholar 

  • Murachi T, K Tanaka, M Hatanaka and T Murakami (1980) Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin).Adv. Enzyme Regul. 19, 407–424.

    Article  PubMed  CAS  Google Scholar 

  • Nagata S(1999) Fas ligand-induced apoptosis.Annu. Rev. Genet. 33, 29–55.

    Article  PubMed  CAS  Google Scholar 

  • Nagata S and P Golstein (1995) The Fas death factor.Science 267, 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T and J Yuan (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis.J. Cell. Biol. 150, 887–894.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, H Zhu, N Morishima, E Li, J Xu, BA Yankner and J Yuan (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta.Nature 403, 98–103.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, T Koyama and I Yamashita (1993) Long-lasting decrease in dopamine uptake sites following repeated administration of methamphet- amine in the rat striatum.Brain Res. 601, 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ(2001) Molecular basis of long-term plasticity underlying addiction.Nat. Rev. Neurosci. 2, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan JP and DB Miller (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse.J. Pharmacol. Exp. Ther. 270, 741–751.

    PubMed  CAS  Google Scholar 

  • Paschen W(2001) Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states.Cell Calcium 29, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Rao A, C Luo and PG Hogan (1997) Transcription factors of the NFAT family: regulation and function.Annu. Rev. Immunol. 15, 707–747.

    Article  PubMed  CAS  Google Scholar 

  • Ravagnan L, T Roumier and G Kroemer (2002) Mitochondria, the killer organelles and their weapons.J. Cell. Physiol. 192, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Reed JC, H Zha, C Aime-Sempe, S Takayama and HG Wang (1996) Structure-function analysis of Bcl-2 family proteins. Regulators of pro- grammed cell death.Adv. Exp. Med. Biol. 406, 99–112.

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, RW Guillery, LS Seiden, CR Schuster and RY Moore (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain.Brain Res. 235, 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, R Fuller, KW Perry, LS Seiden and CR Schuster(1983) Fluoxetine increases long-lasting neostriatal dopamine depletion after administration of d-methamphetamine and d-amphetamine.Neuropharmacology 22, 1165–1169.

    Article  PubMed  CAS  Google Scholar 

  • Salanova V and R Taubner(1984) Intracerebral haemorrhage and vasculitis secondary to amphetamine use.Postgrad. Med. J. 60, 429–430.

    Article  PubMed  CAS  Google Scholar 

  • Schmued LC and JF Bowyer(1997) Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants.Brain Res. 759, 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Seiden LSand KE Sabol (1996) Methamphetamine and methylene-dioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction.NIDA Res. Monogr. 163, 251–276.

    PubMed  CAS  Google Scholar 

  • Seiden LSand G Vosmer (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine.Pharmacol. Biochem. Behav. 21, 29–31.

    Article  PubMed  CAS  Google Scholar 

  • Sheng P, C Cerruti, S Aliand JL Cadet (1996) Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity.In vitro evidence from primary cultures of mesencephalic cells.Ann. NYAcad. Sci. 801, 174–186.

    Article  CAS  Google Scholar 

  • Shimizu S, Y Eguchi, W Kamiike, Y Akao, H Kosaka, J Hasegawa, H Matsuda and Y Tsujimoto (1996) Involvement of ICE family proteases in apoptosis induced by reoxygenation of hypoxic hepatocytes.Am. J. Physiol. 271, G949-G958.

    PubMed  CAS  Google Scholar 

  • Simon SL, C Domier, J Carnell, P Brethen, R Rawson and W Ling (2000) Cognitive impairment in individuals currently using methamphetamine.Am. J. Addict. 9, 222–231.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla PKand RE Heikkila (1988) Neurotoxic effects of 1-methyl-4-phenyl-1,2, 3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice.Prog. Neuropsychopharmacol. Biol. Psychiatry 12, 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla PK, JW Gibb and GR Hanson (1986) Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems.J. Pharmacol. Exp. Ther. 238, 932–937.

    PubMed  CAS  Google Scholar 

  • Stefanis L(2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury.Neuroscientist 11, 50–62.

    Article  PubMed  CAS  Google Scholar 

  • Steranka LR and E Sanders-Bush (1980) Long-term effects of continuous exposure to amphetamine on brain dopamine concentration and synaptosomal uptake in mice.Eur. J. Pharmacol. 65, 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Stumm G, J Schlegel, T Schafer, C Wurz, HD Mennel, JC Krieg and H Vedder (1999) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons.FASEB J. 13, 1065–1072.

    PubMed  CAS  Google Scholar 

  • Susin SA, N Zamzami, M Castedo, T Hirsch, P Marchetti, A Macho, E Daugas, M Geuskens and G Kroemer(1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease.J. Exp. Med. 184, 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Thiriet N, X Deng, M Solinas, B Ladenheim, W Curtis, SR Goldberg, RD Palmiter and JL Cadet (2005) Neuropeptide Y protects against methamphetamine-induced neuronal apoptosis in the mouse striatum.J. Neurosci. 25.

  • Thomas DM, DM Francescutti-Verbeem, X Liu and DM Kuhn (2004) Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment--an oligonucleotide microarray approach.J. Neurochem. 88, 380–393.

    Article  PubMed  CAS  Google Scholar 

  • Toth R, E Szegezdi, U Reichert, JM Bernardon, S Michel, P Ancian, K Kis-Toth, Z Macsari, L Fesus and Z Szondy (2001) Activation-induced apoptosis and cell surface expression of Fas (CD95) ligand are reciprocally regulated by retinoic acid receptor alpha and gamma and involve nur77 in T cells.Eur. J. Immunol. 31, 1382–1391.

    Article  PubMed  CAS  Google Scholar 

  • Utz PJ and P Anderson (2000) Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules.Cell Death Differ. 7, 589–602.

    Article  PubMed  CAS  Google Scholar 

  • Villemagne V, J Yuan, DF Wong, RF Dannals, G Hatzidimitriou, WB Mathews, HT Ravert, J Musachio, UD McCann and GA Ricaurte (1998) Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and directin vitro determinations.J. Neurosci. 18, 419–427.

    PubMed  CAS  Google Scholar 

  • Volkow ND, L Chang, GJ Wang, JS Fowler, D Franceschi, M Sedler, SJ Gatley, E Miller, R Hitzemann, YS Ding and J Logan (2001a) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence.J. Neurosci. 21, 9414–9418.

    CAS  Google Scholar 

  • Volkow ND, L Chang, G Wang, JS Fowler, M Leonido-Yee, D Franceschi, MJ Sedler, SJ Gatley, R Hitzemann, YS Ding, J Logan, C Wong and EN Miller(2001b) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers.Am. J. Psychiatry 158, 377–382.

    Article  CAS  Google Scholar 

  • Wagner GC, GA Ricaurte, LS Seiden, CR Schuster, RJ Miller and J Westley (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine.Brain Res. 181, 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Weissman BA, R Brandeis, E Gilat, G Cohen, D Alkalay, I Rabinovitz, H Sonego. and L Raveh(2004) Monitoring drug-induced neurodegeneration by imaging of peripheral benzodiazepine receptors.Ann. NYAcad. Sci. 1025, 584–589.

    Article  CAS  Google Scholar 

  • Wilson JM, KS Kalasinsky, AI Levey, C Bergeron, G Reiber, RM Anthony, GA Schmunk, K Shannak, JW Haycock and SJ Kish (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users.Nat. Med. 2, 699–703.

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, GA Ricaurte, LS Forno and LS Seiden (1989) Long-term effects of chronic methamphetamine administration in rhesus monkeys.Brain Res. 486, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BKand W Zhu (1998) The effects of methamphetamine on the production of free radicals and oxidative stress.J. Pharmacol. Exp. Ther. 287, 107–114.

    PubMed  CAS  Google Scholar 

  • Yang J, X Liu, K Bhalla, CN Kim, AM Ibrado, J Cai, TI Peng, DP Jones and X Wang (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked [see comments].Science 275, 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  • Yoshizumi M, J Abe, J Haendeler, Q Huang and BC Berk (2000) Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species.J. Biol. Chem. 275, 11706–11712.

    Article  PubMed  CAS  Google Scholar 

  • Yui K, K Goto, S Ikemoto, T Ishiguro, B Angrist, GE Duncan, BB Sheitman, JA Lieberman, SH Bracha and SF Ali (1999) Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization.Mol. Psychiatry 4, 512–523.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lud Cadet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadet, J.L., Jayanthi, S. & Deng, X. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. neurotox res 8, 199–206 (2005). https://doi.org/10.1007/BF03033973

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033973

Keywords

Navigation