Skip to main content

Advertisement

Log in

Matrix Metalloproteinase-2 and Metalloproteinase-9 Activities are Associated with Blood–Brain Barrier Dysfunction in an Animal Model of Severe Sepsis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is no description on the mechanisms associated with blood–brain barrier (BBB) disruption during sepsis development. Thus, we here determined changes in permeability of the BBB in an animal model of severe sepsis and the role of matrix metalloproteinase (MMP)-2 and MMP-9 in the dysfunction of the BBB. Sepsis was induced in Wistar rats by cecal ligation and perforation. BBB permeability was assessed using the Evans blue dye method. The content of MMP-2 and MMP-9 in the cerebral microvessels was determined by western blot. The activity of MMP-2 and MMP-9 was determined using zymography. An inhibitor of MMP-2 and MMP-9 or specific inhibitors of MMP-2 or MMP-9 were administered to define the role of MMPs on BBB permeability, brain inflammatory response, and sepsis-induced cognitive alterations. The increase of BBB permeability is time-related to the increase of MMP-9 and MMP-2 in the microvessels, both in cortex and hippocampus. Using an MMP-2 and MMP-9 inhibitor, or specific MMP-2 or MMP-9 inhibitors, the increase in the permeability of the BBB was reversed. This was associated with lower brain levels of interleukin (IL)-6 and lower oxidative damage. In contrast, only the inhibition of both MMP-9 and MMP-2 was able to improve acute cognitive alterations associated with sepsis. In conclusion, MMP-2 and MMP-9 activation seems to be a major step in BBB dysfunction, but BBB dysfunction seems not to be associated with acute cognitive dysfunction during sepsis development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zampieri FG, Park M, Machado FS, Azevedo LC (2011) Sepsis-associated encephalopathy: not just delirium. Clinics 66:1825–1831

    Article  PubMed  Google Scholar 

  2. Dal-Pizzol F, Ritter C, Cassol-Jr OJ, Rezin GT, Petronilho F, Zugno AI, Quevedo J, Streck EL (2010) Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res 35:1–12

    Article  PubMed  CAS  Google Scholar 

  3. Burkhart CS, Siegemund M, Steiner LA (2010) Cerebral perfusion in sepsis. Crit Care 14:215

    Article  PubMed  Google Scholar 

  4. Jeremias IC, Scaini G, Constantino L, Vuolo F, Ferreira AK, Scherer EB, Kolling J, da Silva DA, de Souza Wyse AT, Bogo MR, Dal-Pizzol F, Streck EL (2012) The decrease on Na(+), K (+)-ATPase activity in the cortex, but not in hippocampus, is reverted by antioxidants in an animal model of sepsis. Mol Neurobiol 46:467–474

    Article  PubMed  CAS  Google Scholar 

  5. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  PubMed  CAS  Google Scholar 

  6. Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z (2011) Matrix metalloproteinase-2 and −9 secreted by leukemic cells increase the permeability of blood–brain barrier by disrupting tight junction proteins. PLoS One 6:e20599

    Article  PubMed  CAS  Google Scholar 

  7. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  PubMed  CAS  Google Scholar 

  8. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158:983–994

    Article  PubMed  CAS  Google Scholar 

  9. Tallant C, Marrero A, Gomis-Rüth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803:20–28

    Article  PubMed  CAS  Google Scholar 

  10. Ritter C, Andrades M, Frota Junior ML, Bonatto F, Pinho RA, Polydoro M, Klamt F, Pinheiro CT, Menna-Barreto SS, Moreira JC, Dal-Pizzol F (2003) Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med 10:1782–1789

    Article  Google Scholar 

  11. Comim CM, Vilela MC, Constantino LS, Petronilho F, Vuolo F, Lacerda-Queiroz N, Rodrigues DH, da Rocha JL, Teixeira AL, Quevedo J, Dal-Pizzol F (2011) Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intensive Care Med 37:711–718

    Article  PubMed  CAS  Google Scholar 

  12. Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occlusion in rats. Brain Research 739:88–96

    Article  PubMed  CAS  Google Scholar 

  13. Kago T, Takagi N, Date I, Takenaga Y, Takagi K, Takeo S (2006) Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun 339:1197–1203

    Article  PubMed  CAS  Google Scholar 

  14. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  15. Barichello T, Martins R, Reinke A, Feier G, Ritter C, Quevedo J, Dal-Pizzol F (2005) Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med 33:221–223

    Article  PubMed  Google Scholar 

  16. Risau W, Wolburg H (1990) Development of the blood–brain barrier. Trends Neurosci 13:174–178

    Article  PubMed  CAS  Google Scholar 

  17. Bojarski C, Weiske J, Schoneberg T, Schroder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O (2004) The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 117:2097–2107

    Article  PubMed  CAS  Google Scholar 

  18. Frisch SM, Francis H (1994) Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  PubMed  CAS  Google Scholar 

  19. Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE (2006) Platelets potentiate brain endothelial alterations induced by plasmodium falciparum. Infect Immun 74:645–653

    Article  PubMed  CAS  Google Scholar 

  20. Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96

    Article  PubMed  CAS  Google Scholar 

  21. Gorodeski GI (2007) Estrogen decrease in tight junctional resistance involves matrix-metalloproteinase-7 mediated remodeling of occludin. Endocrinology 148:218–231

    Article  PubMed  CAS  Google Scholar 

  22. Schubert-Unkmeier A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M (2010) Neisseria meningitides induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. Plos Pathogens 6:e1000874

    Article  Google Scholar 

  23. Liu W, Hendren J, Quin X-J, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood–brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108:811–820

    Article  PubMed  CAS  Google Scholar 

  24. Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci 32:3044–3057

    Article  PubMed  CAS  Google Scholar 

  25. Bellavance MA, Blanchette M, Fortin D (2008) Recent advances in blood–brain barrier disruption as a CNS delivery strategy. AAPSJ 10:166–177

    Article  PubMed  CAS  Google Scholar 

  26. Mun-Bryce S, Rosenberg GA (1998) Gelatinase B modulates selective opening of the blood–brain barrier during inflammation. Am J Physiol 274:1203–1211

    Google Scholar 

  27. Albert J, Radomski A, Soop A, Sollevi C, Frostell A, Radomski MW (2003) Differential release of matrix metalloproteinase-9 and nitric oxide following infusion of endotoxin to human volunteers. Acta Anaesthesiol Scand 47:407–410

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura T, Ebihara I, Shimada N, Shoji H, Koide H (1998) Modulation of plasma metalloproteinase-9 concentrations and peripheral blood monocyte mRNA levels in patients with septic shock: effect of fiber immobilized polymyxin B treatment. Am J Med Sci 316:355–360

    Article  PubMed  CAS  Google Scholar 

  29. Castro MM, Cena J, Cho WJ, Walsh MP, Schulz R (2012) Matrix metalloproteinase-2 proteolysis of calponin-1 contributes to vascular hypocontractility in endotoxemic rats. Arterioscler Thromb Vasc Biol 32:662–668

    Article  PubMed  CAS  Google Scholar 

  30. Gäddnäs FP, Sutinen MM, Koskela M, Tervahartiala T, Sorsa T, Salo TA, Laurila JJ, Koivukangas V, Ala-Kokko TI, Oikarinen A (2010) Matrix-metalloproteinase-2, -8 and −9 in serum and skin blister fluid in patients with severe sepsis. Crit Care 14:R49

    Article  PubMed  Google Scholar 

  31. Cena JJ, Lalu MM, Cho WJ, Chow AK, Bagdan ML, Daniel EE, Castro MM, Schulz R (2010) Inhibition of matrix metalloproteinase activity in vivo protects against vascular hyporeactivity in endotoxemia. Am J Physiol Heart Circ Physiol 298:H45–H51

    Article  PubMed  CAS  Google Scholar 

  32. Candelario-Jalil E, Taheri S, Yang Y, Sood R, Grossetete M, Estrada EY, Fiebich BL, Rosenberg GA (2007) Cyclooxygenase inhibition limits blood–brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323:488–498

    Article  PubMed  CAS  Google Scholar 

  33. Barichello T, Fortunato JJ, Vitali AM, Feier G, Reinke A, Moreira JC, Quevedo J, Dal-Pizzol F (2006) Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 34:886–889

    Article  PubMed  Google Scholar 

  34. Kafa IM, Bakirci S, Uysal M, Kurt MA (2010) Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy. Brain Res 1354:217–226

    Article  PubMed  CAS  Google Scholar 

  35. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington C, Lipton SA (2002) S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  PubMed  CAS  Google Scholar 

  36. Comim CM, Barichello T, Grandgirard D, Dal-Pizzol F, Quevedo J, Leib SL (2013) Caspase-3 mediates in part hippocampal apoptosis in sepsis. Mol Neurobiol 47:394–398

    Article  PubMed  CAS  Google Scholar 

  37. Singh RB, Hryshko L, Freed D, Dhalla NS (2012) Activation of proteolytic enzymes and depression of the sarcolemmal Na+/K+−ATPase in ischemia-reperfused heart may be mediated through oxidative stress. Can J Physiol Pharmacol 90:249–260

    Article  PubMed  CAS  Google Scholar 

  38. Wang N, Zhu M, Tsao SW, Man K, Zhang Z, Feng Y (2012) Up-regulation of TIMP-1 by genipin inhibits MMP-2 activities and suppresses the metastatic potential of human hepatocellular carcinoma. PLoS One 7:e46318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NENASC project (PRONEX program CNPq/FAPESC); INCT-TM; PROCAD Sepse—CAPES.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Dal-Pizzol.

Additional information

Authors’ contribution

HRA, EMS, FP, FD-P, and CR were involved in the conception, hypotheses delineation, and design of the study. FV, RAM, LC, GF, MP, and CMC performed the acquisition of the data or analyzed such information. HRA, DPG, JCFM, CR, JQ, and FD-P wrote the article or were substantially involved in its revision prior to submission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dal-Pizzol, F., Rojas, H.A., dos Santos, E.M. et al. Matrix Metalloproteinase-2 and Metalloproteinase-9 Activities are Associated with Blood–Brain Barrier Dysfunction in an Animal Model of Severe Sepsis. Mol Neurobiol 48, 62–70 (2013). https://doi.org/10.1007/s12035-013-8433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8433-7

Keywords

Navigation