Skip to main content

Advertisement

Log in

Bergmann Glia Function in Granule Cell Migration During Cerebellum Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Granule cell migration influences the laminar structure of the cerebellum and thereby affects cerebellum function. Bergmann glia are derived from radial glial cells and aid in granule cell radial migration by providing a scaffold for migration and by mediating interactions between Bergmann glia and granule cells. In this review, we summarize Bergmann glia characteristics and the mechanisms underlying the effect of Bergmann glia on the radial migration of granule neurons in the cerebellum. Furthermore, we will focus our discussion on the important factors involved in glia-mediated radial migration so that we may elucidate the possible mechanistic pathways used by Bergmann glia to influence granule cell migration during cerebellum development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad B, Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487

    Article  PubMed  Google Scholar 

  2. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Cogn Sci 2:307–313

    Article  PubMed  CAS  Google Scholar 

  3. Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179:23–48

    Article  PubMed  CAS  Google Scholar 

  4. Zhang L, Goldman JE (1996) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16:47–54

    Article  PubMed  Google Scholar 

  5. Qiu Z, Cang Y, Goff SP (2010) Abl family tyrosine kinases are essential for basement membrane integrity and cortical lamination in the cerebellum. J Neurosci 30:14430–14439

    Article  PubMed  CAS  Google Scholar 

  6. Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    Article  PubMed  CAS  Google Scholar 

  7. Volpe JJ, Adams RD (1972) Cerebro-hepato-renal syndrome of Zellweger: an inherited disorder of neuronal migration. Acta Neuropathol 20:175–198

    Article  PubMed  CAS  Google Scholar 

  8. Komuro H, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci 21:527–540

    PubMed  CAS  Google Scholar 

  9. Hatten ME, Mason CA (1990) Mechanisms of glial-guided neuronal migration in vitro and in vivo. Cell Mol Life Sci 46:907–916

    Article  CAS  Google Scholar 

  10. Altman J (1972) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–463

    Article  PubMed  CAS  Google Scholar 

  11. Das GD (1976) Differentiation of Bergmann glia cells in the cerebellum: a Golgi study. Brain Res 110:199–213

    Article  PubMed  CAS  Google Scholar 

  12. Siegel A, Reichenbach A, Hanke S, Senitz D, Brauer K, Smith TG (1991) Comparative morphometry of Bergmann glial (Golgi epithelial) cells. Anat Embryol 183:605–612

    Article  PubMed  CAS  Google Scholar 

  13. Liesi P, Akinshola E, Matsuba K, Lange K, Morest K (2003) Cellular migration in the postnatal rat cerebellar cortex: confocal–infrared microscopy and the rapid Golgi method. J Neurosci Res 72:290–302

    Article  PubMed  CAS  Google Scholar 

  14. Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M (2000) Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 418:106–120

    Article  PubMed  CAS  Google Scholar 

  15. Shiga T, Ichikawa M, Hirata Y (1983) A Golgi study of Bergmann glial cells in developing rat cerebellum. Anat Embryol 167:191–201

    Article  PubMed  CAS  Google Scholar 

  16. Edwards MA, Yamamoto M (1990) Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36:121–144

    Article  PubMed  CAS  Google Scholar 

  17. Hanke S, Reichenbach A (1987) Quantitative-morphometric aspects of Bergmann glial (Golgi epithelial) cell development in rats. Anat Embryol 177:183–188

    Article  PubMed  CAS  Google Scholar 

  18. Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13:541–549

    Article  PubMed  Google Scholar 

  19. Rakic P (2003) Elusive radial glial cells: historical and evolutionary perspective. Glia 43:19–32

    Article  PubMed  Google Scholar 

  20. Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77:94–108

    Article  PubMed  Google Scholar 

  21. Choi BH, Lapham LW (1980) Evolution of Bergman glia in developing human fetal cerebellum: a Golgi, electron microscopic and immunofluorescent study. Brain Res 190:369–383

    Article  PubMed  CAS  Google Scholar 

  22. Rakic P (1971) Neuron–glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312

    Article  PubMed  CAS  Google Scholar 

  23. Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    Article  PubMed  CAS  Google Scholar 

  24. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  PubMed  CAS  Google Scholar 

  25. Howard BM, Mo Z, Filipovic R, Moore AR, Antic SD, Zecevic N (2008) Radial glia cells in the developing human brain. Neuroscientist 14:459–473

    Article  PubMed  Google Scholar 

  26. Reichenbach A, Siegel A, Rickmann M, Wolff JR, Noone D, Robinson SR (1995) Distribution of Bergmann glial somata and processes: implications for function. J Hirnforsch 36:509

    PubMed  CAS  Google Scholar 

  27. Yuasa S, Kawamura K, Kuwano R, Ono K (1996) Neuron–glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int J Dev Neurosci 14:429–438

    Article  PubMed  CAS  Google Scholar 

  28. Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M (2001) 3-Phosphoglycerate dehydrogenase, a key enzyme forl-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21:7691–7704

    PubMed  CAS  Google Scholar 

  29. Pompolo S, Harley VR (2001) Localisation of the SRY-related HMG box protein, SOX9, in rodent brain. Brain Res 906:143–148

    Article  PubMed  CAS  Google Scholar 

  30. Hachem S, Laurenson AS, Hugnot JP, Legraverend C (2007) Expression of S100B during embryonic development of the mouse cerebellum. BMC Dev Biol 7:17

    Article  PubMed  CAS  Google Scholar 

  31. Koirala S, Corfas G (2010) Identification of novel glial genes by single-cell transcriptional profiling of Bergmann glial cells from mouse cerebellum. PLoS One 5:e9198

    Article  PubMed  CAS  Google Scholar 

  32. Rakic P, Sidman RL (1973) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152:133–161

    Article  PubMed  CAS  Google Scholar 

  33. Rakic P, Sidman RL (1973) Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci 70:240–244

    Article  PubMed  CAS  Google Scholar 

  34. Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35

    Article  PubMed  CAS  Google Scholar 

  35. Giménez y Ribotta M, Langa F, Menet V, Privat A (2000) Comparative anatomy of the cerebellar cortex in mice lacking vimentin, GFAP, and both vimentin and GFAP. Glia 31:69–83

    Article  PubMed  Google Scholar 

  36. Li X, Zhang P, Yang Y, Xiong Y, Qi Y, Hu H (2008) Differentiation and developmental origin of cerebellar granule neuron ectopia in protein O-mannose UDP-N-acetylglucosaminyl transferase 1 knockout mice. Neuroscience 152:391–406

    Article  PubMed  CAS  Google Scholar 

  37. Yue Q, Groszer M, Gil JS, Berk AJ, Messing A, Wu H, Liu X (2005) PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization. Development 132:3281–3291

    Article  PubMed  CAS  Google Scholar 

  38. Moonen G, Grau-Wagemans MP, Selak I (1982) Plasminogen activator–plasmin system and neuronal migration. Nature 298:753–755

    Article  PubMed  CAS  Google Scholar 

  39. Lindner J, Rathjen FG, Schachner M (1983) L1 mono-and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305:427–430

    Article  PubMed  CAS  Google Scholar 

  40. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Sci Signal 102:2105

    Google Scholar 

  41. Mancini JD, Atchison WD (2007) The NR2B subunit in NMDA receptors is functionally important during cerebellar granule cell migration. Neurosci Lett 429:87–90

    Article  PubMed  CAS  Google Scholar 

  42. Tárnok K, Czöndör K, Jelitai M, Czirók A, Schlett K (2008) NMDA receptor NR2B subunit over–expression increases cerebellar granule cell migratory activity. J Neurochem 104:818–829

    PubMed  Google Scholar 

  43. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of Hedgehog signaling. Curr Top Dev Biol 53:1–114

    Article  PubMed  CAS  Google Scholar 

  44. Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    Article  PubMed  CAS  Google Scholar 

  45. Dahmane N, Ruiz-i-Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  46. Corrales JMD, Blaess S, Mahoney EM, Joyner AL (2006) The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133:1811–1821

    Article  PubMed  CAS  Google Scholar 

  47. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J [kappa]/Su (H). Curr Biol 5:1416–1423

    Article  PubMed  CAS  Google Scholar 

  48. Lütolf S, Radtke F, Aguet M, Suter U, Taylor V (2002) Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129:373–385

    PubMed  Google Scholar 

  49. Komine O, Nagaoka M, Watase K, Gutmann DH, Tanigaki K, Honjo T, Radtke F, Saito T, Chiba S, Tanaka K (2007) The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling. Dev Biol 311:238–250

    Article  PubMed  CAS  Google Scholar 

  50. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 8:873–880

    Article  PubMed  CAS  Google Scholar 

  51. Weller M, Krautler N, Mantei N, Suter U, Taylor V (2006) Jagged1 ablation results in cerebellar granule cell migration defects and depletion of Bergmann glia. Dev Neurosci 28:70–80

    Article  PubMed  CAS  Google Scholar 

  52. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  PubMed  CAS  Google Scholar 

  53. Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, Eberhart CG, Burger PC, Baker SJ (2001) Pten regulates neuronal soma size: a mouse model of Lhermitte–Duclos disease. Nat Genet 29:404–411

    Article  PubMed  CAS  Google Scholar 

  54. Lachyankar MB, Sultana N, Schonhoff CM, Mitra P, Poluha W, Lambert S, Quesenberry PJ, Litofsky NS, Recht LD, Nabi R (2000) A role for nuclear PTEN in neuronal differentiation. J Neurosci 20:1404–1413

    PubMed  CAS  Google Scholar 

  55. Marino S, Krimpenfort P, Leung C, van der Korput HAGM, Trapman J, Camenisch I, Berns A, Brandner S (2002) PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development 129:3513–3522

    PubMed  CAS  Google Scholar 

  56. D'Arca D, Zhao X, Xu W, Ramirez-Martinez NC, Iavarone A, Lasorella A (2010) Huwe1 ubiquitin ligase is essential to synchronize neuronal and glial differentiation in the developing cerebellum. Proc Natl Acad Sci 107:5875–5880

    Article  PubMed  Google Scholar 

  57. Wang X, Imura T, Sofroniew MV, Fushiki S (2011) Loss of adenomatous polyposis coli in Bergmann glia disrupts their unique architecture and leads to cell nonautonomous neurodegeneration of cerebellar Purkinje neurons. Glia 59:857–868

    Article  PubMed  Google Scholar 

  58. Fan X, Kim H-J, Bouton D, Warner M, Gustafsson J-A (2008) Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci U S A 105:13445–13450

    Article  PubMed  CAS  Google Scholar 

  59. Xing Y, Fan X, Ying D (2010) Liver X receptor agonist treatment promotes the migration of granule neurons during cerebellar development. J Neurochem 115:1486–1494

    Article  PubMed  CAS  Google Scholar 

  60. Piper M, Harris L, Barry G, Heng YHE, Plachez C, Gronostajski RM, Richards LJ (2011) Nuclear factor one X regulates the development of multiple cellular populations in the postnatal cerebellum. J Comp Neurol 519:3532–3548

    Article  PubMed  CAS  Google Scholar 

  61. Martinez R, Eller C, Viana NB, Gomes FCA (2011) Thyroid hormone induces cerebellar neuronal migration and Bergmann glia differentiation through epidermal growth factor/mitogen–activated protein kinase pathway. Eur J Neurosci 33:26–35

    Article  PubMed  Google Scholar 

  62. Seress L, Basco E, Hajos F, Fülöp Z (1978) The effect of thyroid hormone on the formation of rat cerebellar Bergmann-glia. Acta Morphol Acad Sci Hung 26:95

    PubMed  CAS  Google Scholar 

  63. Morte B, Manzano J, Scanlan TS, Vennstrom B, Bernal J (2004) Aberrant maturation of astrocytes in thyroid hormone receptor alpha 1 knockout mice reveals an interplay between thyroid hormone receptor isoforms. Endocrinology 145:1386–1391

    Article  PubMed  CAS  Google Scholar 

  64. Sugisaki T, Noguchi T, Beamer WG, Kozak LP (1991) Genetic hypothyroid mice: normal cerebellar morphology but altered glycerol-3-phosphate dehydrogenase in Bergmann glia. J Neurosci 11:2614–2621

    PubMed  CAS  Google Scholar 

  65. Portella AC, Carvalho F, Faustino L, Wondisford FE, Ortiga-Carvalho TM, Gomes FCA (2010) Thyroid hormone receptor [beta] mutation causes severe impairment of cerebellar development. Mol Cell Neurosci 44:68–77

    Article  PubMed  CAS  Google Scholar 

  66. Chen YT, Collins LL, Uno H, Chang C (2005) Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol Cell Biol 25:2722–2732

    Article  PubMed  CAS  Google Scholar 

  67. Chen YT, Collins LL, Chang SS, Chang C (2008) The roles of testicular orphan nuclear receptor 4 (TR4) in cerebellar development. Cerebellum 7:9–17

    Article  PubMed  CAS  Google Scholar 

  68. Kim YS, Harry GJ, Kang HS, Goulding D, Wine RN, Kissling GE, Liao G, Jetten AM (2010) Altered cerebellar development in nuclear receptor TAK1/TR4 null mice is associated with deficits in GLAST+ glia, alterations in social behavior, motor learning, startle reactivity, and microglia. Cerebellum 9:310–323

    Article  PubMed  CAS  Google Scholar 

  69. Georgala PA, Manuel M, Price DJ (2011) The generation of superficial cortical layers is regulated by levels of the transcription factor Pax6. Cereb Cortex 21:81–94

    Article  PubMed  Google Scholar 

  70. Mo Z, Zecevic N (2008) Is Pax6 critical for neurogenesis in the human fetal brain? Cereb Cortex 18:1455–1465

    Article  PubMed  Google Scholar 

  71. Suter DM, Tirefort D, Julien S, Krause KH (2009) A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells 27:49–58

    Article  PubMed  CAS  Google Scholar 

  72. Engelkamp D, Rashbass P, Seawright A, van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126:3585–3596

    PubMed  CAS  Google Scholar 

  73. Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412

    PubMed  CAS  Google Scholar 

  74. Hafizi S, Dahlbäck B (2006) Gas6 and protein S. FEBS J 273:5231–5244

    Article  PubMed  CAS  Google Scholar 

  75. Corfas G, Rosen KM, Aratake H, Krauss R, Fischbach GD (1995) Differential expression of ARIA isoforms in the rat brain. Neuron 14:103–115

    Article  PubMed  CAS  Google Scholar 

  76. Sandrock AW Jr, Goodearl AD, Yin QW, Chang D, Fischbach GD (1995) ARIA is concentrated in nerve terminals at neuromuscular junctions and at other synapses. J Neurosci 15:6124–6136

    PubMed  CAS  Google Scholar 

  77. Rio C, Rieff HI, Qi P, Corfas G (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19:39–50

    Article  PubMed  CAS  Google Scholar 

  78. Elenius K, Corfas G, Paul S, Choi CJ, Rio C, Plowman GD, Klagsbrun M (1997) A novel juxtamembrane domain isoform of HER4/erbB4. J Biol Chem 272:26761–26768

    Article  PubMed  CAS  Google Scholar 

  79. Anton ES, Marchionni MA, Lee KF, Rakic P (1997) Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124:3501–3510

    PubMed  CAS  Google Scholar 

  80. Ever L, Gaiano N (2005) Radial ‘glial’ progenitors: neurogenesis and signaling. Curr Opin Neurobiol 15:29–33

    Article  PubMed  CAS  Google Scholar 

  81. Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM (2010) Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J Neurosci 30:5590–5602

    Article  PubMed  CAS  Google Scholar 

  82. Gregg C, Weiss S (2003) Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23:11587–11601

    PubMed  CAS  Google Scholar 

  83. Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM (2004) Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J Neurosci 24:6057–6069

    Article  PubMed  CAS  Google Scholar 

  84. Lin Y, Chen L, Lin C, Luo Y, Tsai RYL, Wang F (2009) Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Dev Biol 329:44–54

    Article  PubMed  CAS  Google Scholar 

  85. Smith KM, Williamson TL, Schwartz ML, Vaccarino FM (2012) Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice. Brain Res 1460:12–24

    Article  CAS  Google Scholar 

  86. Wu QF, Yang L, Li S, Wang Q, Yuan XB, Gao X, Bao L, Zhang X (2012) Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 149:1549–1564

    Article  PubMed  CAS  Google Scholar 

  87. Escalante-Alcalde D, Hernandez L, Le Stunff H, Maeda R, Lee HS, Sciorra VA, Daar I, Spiegel S, Morris AJ, Stewart CL (2003) The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development 130:4623–4637

    Article  PubMed  CAS  Google Scholar 

  88. López-Juárez A, Morales-Lázaro S, Sánchez-Sánchez R, Sunkara M, Lomelí H, Velasco I, Morris AJ, Escalante-Alcalde D (2011) Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosine–1–phosphate metabolism/signaling and development. Glia 59:577–589

    Article  PubMed  Google Scholar 

  89. Adams NC, Tomoda T, Cooper M, Dietz G, Hatten ME (2002) Mice that lack astrotactin have slowed neuronal migration. Development 129:965–972

    PubMed  CAS  Google Scholar 

  90. Wilson PM, Fryer RH, Fang Y, Hatten ME (2010) Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J Neurosci 30:8529–8540

    Article  PubMed  CAS  Google Scholar 

  91. Kullmann JA, Neumeyer A, Gurniak CB, Friauf E, Witke W, Rust MB (2011) Profilin1 is required for glial cell adhesion and radial migration of cerebellar granule neurons. EMBO Rep 13:75–82

    Article  PubMed  CAS  Google Scholar 

  92. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltrán-Valero de Bernabé D, Gündeşli H, Willer T, Satz JS, Crawford RW, Burden SJ (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 364:939–946

    Article  PubMed  CAS  Google Scholar 

  93. Toda T, Kobayashi K, Takeda S, Sasaki J, Kurahashi H, Kano H, Tachikawa M, Wang F, Nagai Y, Taniguchi K (2008) Fukuyama–type congenital muscular dystrophy (FCMD) and α–dystroglycanopathy. Congenit Anomalies 43:97–104

    Article  Google Scholar 

  94. Qu Q, Smith FI (2004) Alpha–dystroglycan interactions affect cerebellar granule neuron migration. J Neurosci Res 76:771–782

    Article  PubMed  CAS  Google Scholar 

  95. Qu Q, Smith FI (2005) Neuronal migration defects in cerebellum of the Large myd mouse are associated with disruptions in Bergmann glia organization and delayed migration of granule neurons. Cerebellum 4:261–270

    Article  PubMed  Google Scholar 

  96. Moos M, Tacke R, Scherer H, Teplow D, Früh K, Schachner M (1988) Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334:701–703

    Article  PubMed  CAS  Google Scholar 

  97. Hortsch M (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17:587–593

    Article  PubMed  CAS  Google Scholar 

  98. Nakamura Y, Lee S, Haddox CL, Weaver EJ, Lemmon VP (2010) Role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development. J Comp Neurol 518:1113–1132

    Article  PubMed  CAS  Google Scholar 

  99. Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, Hartmann D, Altevogt P, Saftig P, Reiss K (2005) L1 is sequentially processed by two differently activated metalloproteases and presenilin/γ-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 25:9040–9053

    Article  PubMed  CAS  Google Scholar 

  100. Frick A, Grammel D, Schmidt F, Poschl J, Priller M, Pagella P, Von Bueren AO, Peraud A, Tonn JC, Herms J, Rutkowski S, Kretzschmar HA, Schuller U (2012) Proper cerebellar development requires expression of beta 1-integrin in Bergmann glia, but not in granule neurons. Glia 60:820–832

    Article  PubMed  Google Scholar 

  101. Belvindrah R, Nalbant P, Ding S, Wu C, Bokoch GM, Müller U (2006) Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development. Mol Cell Neurosci 33:109–125

    Article  PubMed  CAS  Google Scholar 

  102. Roussel MF, Hatten ME (2011) Cerebellum: development and medulloblastoma. Curr Top Dev Biol 94:235–282

    Article  PubMed  CAS  Google Scholar 

  103. Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, Chong CR, Chang KS, Fereshteh M, Gardner D (2010) Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17:388–399

    Article  PubMed  CAS  Google Scholar 

  104. Ridgway LD, Wetzel MD, Marchetti D (2011) Heparanase modulates Shh and Wnt3a signaling in human medulloblastoma cells. Exp Ther Med 2:229–238

    PubMed  CAS  Google Scholar 

  105. Gonzalez-Burgos I, Alejandre-Gomez M (2005) Cerebellar granule cell and Bergmann glial cell maturation in the rat is disrupted by pre-and post-natal exposure to moderate levels of ethanol. Int J Dev Neurosci 23:383–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (Nos. 31070927 and 31071299) and the Scientific Research Foundation for the Returned Overseas Chongqing Scholars (cstc2011jjzt0137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotang Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Yang, Y., Tang, X. et al. Bergmann Glia Function in Granule Cell Migration During Cerebellum Development. Mol Neurobiol 47, 833–844 (2013). https://doi.org/10.1007/s12035-013-8405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8405-y

Keywords

Navigation