Skip to main content

Advertisement

Log in

Overlapped Metabolic and Therapeutic Links between Alzheimer and Diabetes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) and diabetes are among the most common diseases associated with ageing. The pathology of AD is strongly associated with accumulated misfolding proteins that results in neuronal dysfunction within the brain. Diabetes, on the contrary, is characterised by altered insulin signaling that results in reduced glucose uptake, metabolic suppression of energy consuming cells and conversion of glucose to fat in the liver. Despite distinguishing features, these diseases share common elements and may in fact be viewed as fundamentally similar disorders that differ in magnitude of specific traits, primarily affected tissues and time of onset. In this review, we outline the fundamental basis of each of the two diseases and highlight similarities in their pathophysiology. Further ahead we will discuss these features in relation to the development of drugs to treat these two diseases, particularly AD, for which the development of therapeutic chemicals has proven to be particularly difficult. We conclude with comments on efforts to develop a simple organism, Caenorhabditis elegans, as a genetic model to be used to study the systems biology of diabetes and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Citron M (2004) Strategies for disease modification in Alzheimer's disease. Nat Rev Neurosci 5(9):677–685. doi:10.1038/nrn1495

    Article  PubMed  CAS  Google Scholar 

  2. Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, Kurinami H, Shinohara M, Rakugi H, Morishita R (2010) Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A 107(15):7036–7041. doi:10.1073/pnas.1000645107

    Article  PubMed  CAS  Google Scholar 

  3. Iqbal K, Grundke-Iqbal I (2006) Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective. J Alzheimers Dis 9(3 Suppl):219–242

    PubMed  CAS  Google Scholar 

  4. Lin EH, Rutter CM, Katon W, Heckbert SR, Ciechanowski P, Oliver MM, Ludman EJ, Young BA, Williams LH, McCulloch DK, Von Korff M (2010) Depression and advanced complications of diabetes: a prospective cohort study. Diabetes Care 33(2):264–269. doi:10.2337/dc09-1068

    Article  PubMed  Google Scholar 

  5. Jakicic JM, Jaramillo SA, Balasubramanyam A, Bancroft B, Curtis JM, Mathews A, Pereira M, Regensteiner JG, Ribisl PM, Look ASG (2009) Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the Look AHEAD Study. Int J Obes 33(3):305–316. doi:10.1038/ijo.2008.280

    Article  CAS  Google Scholar 

  6. Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Investig 103(7):931–943. doi:10.1172/JCI6609

    Article  PubMed  CAS  Google Scholar 

  7. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    PubMed  CAS  Google Scholar 

  8. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8(3):247–268

    PubMed  CAS  Google Scholar 

  9. Umegaki H (2012) Neurodegeneration in diabetes mellitus. Adv Exp Med Biol 724:258–265. doi:10.1007/978-1-4614-0653-219

    Article  PubMed  CAS  Google Scholar 

  10. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer's disease? Ageing Res Rev 10(2):264–273. doi:10.1016/j.arr.2011.01.001

    Article  PubMed  CAS  Google Scholar 

  11. Ristow M (2004) Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82(8):510–529. doi:10.1007/s00109-004-0552-1

    Article  PubMed  Google Scholar 

  12. Roche E, Reig JA, Campos A, Paredes B, Isaac JR, Lim S, Calne RY, Soria B (2005) Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transpl Immunol 15(2):113–129. doi:10.1016/j.trim.2005.09.008

    Article  PubMed  CAS  Google Scholar 

  13. Watson GS, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur J Pharmacol 490(1–3):97–113. doi:10.1016/j.ejphar.2004.02.048

    Article  PubMed  CAS  Google Scholar 

  14. Sun MK, Alkon DL (2006) Links between Alzheimer's disease and diabetes. Drugs today 42(7):481–489. doi:10.1358/dot.2006.42.7.973588

    Article  PubMed  CAS  Google Scholar 

  15. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490(1–3):115–125. doi:10.1016/j.ejphar.2004.02.049

    Article  PubMed  CAS  Google Scholar 

  16. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53(9):1937–1942

    Article  PubMed  CAS  Google Scholar 

  17. Pasquier F, Boulogne A, Leys D, Fontaine P (2006) Diabetes mellitus and dementia. Diabetes Metabol 32(5 Pt 1):403–414

    Article  CAS  Google Scholar 

  18. Sjogren M, Mielke M, Gustafson D, Zandi P, Skoog I (2006) Cholesterol and Alzheimer's disease—is there a relation? Mech Ageing Dev 127(2):138–147. doi:10.1016/j.mad.2005.09.020

    Article  PubMed  CAS  Google Scholar 

  19. Leoni V, Solomon A, Kivipelto M (2010) Links between ApoE, brain cholesterol metabolism, tau and amyloid beta-peptide in patients with cognitive impairment. Biochem Soc Trans 38(4):1021–1025. doi:10.1042/BST0381021

    Article  PubMed  CAS  Google Scholar 

  20. Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer's disease. Am J Pathol 175(5):2089–2098. doi:10.2353/ajpath.2009.090157

    Article  PubMed  CAS  Google Scholar 

  21. Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75(3):227–232

    Article  PubMed  CAS  Google Scholar 

  22. Li L (2007) Is Glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer's disease? Neurosci Bull 23(1):58–65

    Article  PubMed  Google Scholar 

  23. Perry T, Greig NH (2002) The glucagon-like peptides: a new genre in therapeutic targets for intervention in Alzheimer's disease. J Alzheimers Dis 4(6):487–496

    PubMed  CAS  Google Scholar 

  24. Li L, Holscher C (2007) Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Rev 56(2):384–402. doi:10.1016/j.brainresrev.2007.09.001

    Article  PubMed  CAS  Google Scholar 

  25. Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL (2010) Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol 90(4):498–510. doi:10.1016/j.pneurobio.2010.01.002

    Article  PubMed  CAS  Google Scholar 

  26. Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58(12):2718–2725. doi:10.2337/db09-1003

    Article  PubMed  CAS  Google Scholar 

  27. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122. doi:10.1001/archneur.60.8.1119

    Article  PubMed  Google Scholar 

  28. Lopez OL (2011) The growing burden of Alzheimer's disease. Am J Manage Care 17(Suppl 13):S339–S345

    Google Scholar 

  29. Selvin E, Coresh J, Brancati FL (2006) The burden and treatment of diabetes in elderly individuals in the U.S. Diabetes Care 29(11):2415–2419. doi:10.2337/dc06-1058

    Article  PubMed  Google Scholar 

  30. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204. doi:10.1126/science.1173635

    Article  PubMed  CAS  Google Scholar 

  31. Ford D, Ions LJ, Alatawi F, Wakeling LA (2011) The potential role of epigenetic responses to diet in ageing. Proc Nutr Soc 70(3):374–384. doi:10.1017/S0029665111000851

    Article  PubMed  Google Scholar 

  32. Cruzen C, Colman RJ (2009) Effects of caloric restriction on cardiovascular aging in non-human primates and humans. Clin Geriatr Med 25(4):733–743. doi:10.1016/j.cger.2009.07.001

    Article  PubMed  Google Scholar 

  33. Gonzalez O, Tobia C, Ebersole J, Novak MJ (2012) Caloric restriction and chronic inflammatory diseases. Oral Dis 18(1):16–31. doi:10.1111/j.1601-0825.2011.01830.x

    Article  PubMed  CAS  Google Scholar 

  34. Mandal S, Hart N (2012) Respiratory complications of obesity. Clin Med 12(1):75–78

    PubMed  Google Scholar 

  35. Reaven GM (2011) Insulin resistance: the link between obesity and cardiovascular disease. Med Clin North Am 95(5):875–892. doi:10.1016/j.mcna.2011.06.002

    Article  PubMed  CAS  Google Scholar 

  36. Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12(5):e426–e437. doi:10.1111/j.1467-789X.2010.00825.x

    Article  PubMed  CAS  Google Scholar 

  37. Slomko H, Heo HJ, Einstein FH (2012) Minireview: epigenetics of obesity and diabetes in humans. Endocrinology 153(3):1025–1030. doi:10.1210/en.2011-1759

    Article  PubMed  CAS  Google Scholar 

  38. Wolf PA, Beiser A, Elias MF, Au R, Vasan RS, Seshadri S (2007) Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr Alzheimer Res 4(2):111–116

    Article  PubMed  CAS  Google Scholar 

  39. Luchsinger JA (2008) Adiposity, hyperinsulinemia, diabetes and Alzheimer's disease: an epidemiological perspective. Eur J Pharmacol 585(1):119–129. doi:10.1016/j.ejphar.2008.02.048

    Article  PubMed  CAS  Google Scholar 

  40. Cheng D, Noble J, Tang MX, Schupf N, Mayeux R, Luchsinger JA (2011) Type 2 diabetes and late-onset Alzheimer's disease. Dement Geriatr Cogn Disord 31(6):424–430. doi:10.1159/000324134

    Article  PubMed  CAS  Google Scholar 

  41. Iglseder B (2011) Diabetes mellitus and cognitive decline. Wien Med Wochenschr 161(21–22):524–530. doi:10.1007/s10354-011-0003-x

    Article  PubMed  Google Scholar 

  42. Llibre Jde J, Valhuerdi A, Calvo M, Garcia RM, Guerra M, Laucerique T, Lopez AM, Llibre JC, Noriega L, Sanchez IY, Porto R, Arencibia F, Marcheco B, Moreno C (2011) Dementia and other chronic diseases in older adults in Havana and Matanzas: the 10/66 study in Cuba. MEDICC rev 13(4):30–37

    PubMed  Google Scholar 

  43. Tripathi M, Vibha D, Gupta P, Bhatia R, Srivastava MV, Vivekanandhan S, Bhushan Singh M, Prasad K, Dergalust S, Mendez MF (2012) Risk factors of dementia in North India: a case–control study. Aging Ment Health 16(2):228–235. doi:10.1080/13607863.2011.583632

    Article  PubMed  Google Scholar 

  44. Accardi G, Caruso C, Colonna-Romano G, Camarda C, Monastero R, Candore G (2012) Can Alzheimer disease be a form of type 3 diabetes? Rejuvenation Res 15(2):217–221. doi:10.1089/rej.2011.1289

    Article  PubMed  CAS  Google Scholar 

  45. de la Monte SM, Wands JR (2008) Alzheimer's disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Tech 2(6):1101–1113

    Google Scholar 

  46. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60. doi:10.1038/nrn1007

    Article  PubMed  CAS  Google Scholar 

  47. Reitz C (2012) Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012:369808. doi:10.1155/2012/369808

    PubMed  Google Scholar 

  48. Milojevic J, Melacini G (2011) Stoichiometry and affinity of the human serum albumin-Alzheimer's Abeta peptide interactions. Biophys J 100(1):183–192. doi:10.1016/j.bpj.2010.11.037

    Article  PubMed  CAS  Google Scholar 

  49. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi:10.1038/nm1782

    Article  PubMed  CAS  Google Scholar 

  50. DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer's disease and type II diabetes. Chem Soc Rev 41(2):608–621. doi:10.1039/c1cs15112f

    Article  PubMed  CAS  Google Scholar 

  51. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. doi:10.1038/nrm2101

    Article  PubMed  CAS  Google Scholar 

  52. Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, Oliveira CR, Moreira PI (2012) Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer's disease and diabetes interrelation. Brain Res 1441:64–78. doi:10.1016/j.brainres.2011.12.063

    Article  PubMed  CAS  Google Scholar 

  53. Luca S, Yau WM, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46(47):13505–13522. doi:10.1021/bi701427q

    Article  PubMed  CAS  Google Scholar 

  54. Woods SC, Lutz TA, Geary N, Langhans W (2006) Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc B Biol Sci 361(1471):1219–1235. doi:10.1098/rstb.2006.1858

    Article  CAS  Google Scholar 

  55. Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29(3):303–316. doi:10.1210/er.2007-0037

    Article  PubMed  CAS  Google Scholar 

  56. Zraika S, Hull RL, Udayasankar J, Aston-Mourney K, Subramanian SL, Kisilevsky R, Szarek WA, Kahn SE (2009) Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia 52(4):626–635. doi:10.1007/s00125-008-1255-x

    Article  PubMed  CAS  Google Scholar 

  57. Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53(2):474–481

    Article  PubMed  CAS  Google Scholar 

  58. Fu W, Ruangkittisakul A, MacTavish D, Shi JY, Ballanyi K, Jhamandas JH (2012) Amyloid beta (Abeta) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J Biol Chem 287(22):18820–18830. doi:10.1074/jbc.M111.331181

    Article  PubMed  CAS  Google Scholar 

  59. Scherzer-Attali R, Shaltiel-Karyo R, Adalist YH, Segal D, Gazit E (2012) Generic inhibition of amyloidogenic proteins by two naphthoquinone–tryptophan hybrid molecules. Proteins 80(8):1962–1973. doi:10.1002/prot.24080

    PubMed  CAS  Google Scholar 

  60. Gupta R, Kapoor N, Raleigh DP, Sakmar TP (2012) Nucleobindin 1 caps human islet amyloid polypeptide protofibrils to prevent amyloid fibril formation. J Mol Biol 421(2–3):378–389. doi:10.1016/j.jmb.2012.04.017

    Article  PubMed  CAS  Google Scholar 

  61. Sesti G (2006) Pathophysiology of insulin resistance. Best Pract Res Clin Endocrinol Metab 20(4):665–679. doi:10.1016/j.beem.2006.09.007

    Article  PubMed  CAS  Google Scholar 

  62. Yang XL, Chan JC (2012) Diabetes, insulin and cancer risk. World J Diabetes 3(4):60–64. doi:10.4239/wjd.v3.i4.60

    Article  PubMed  Google Scholar 

  63. Banks WA (2004) The source of cerebral insulin. Eur J Pharmacol 490(1–3):5–12. doi:10.1016/j.ejphar.2004.02.040

    Article  PubMed  CAS  Google Scholar 

  64. Bosco D, Fava A, Plastino M, Montalcini T, Pujia A (2011) Possible implications of insulin resistance and glucose metabolism in Alzheimer's disease pathogenesis. J Cell Mol Med 15(9):1807–1821. doi:10.1111/j.1582-4934.2011.01318.x

    Article  PubMed  CAS  Google Scholar 

  65. Wang Q, Jin T (2009) The role of insulin signaling in the development of beta-cell dysfunction and diabetes. Islets 1(2):95–101. doi:10.4161/isl.1.2.9263

    Article  PubMed  Google Scholar 

  66. Thorens B (2012) Sensing of glucose in the brain. Handb Exp Pharmacol 209:277–294. doi:10.1007/978-3-642-24716-3_12

    Article  PubMed  CAS  Google Scholar 

  67. Pansuria M, Xi H, Li L, Yang XF, Wang H (2012) Insulin resistance, metabolic stress, and atherosclerosis. Front Biosci 4:916–931

    Article  Google Scholar 

  68. Collino M, Aragno M, Castiglia S, Tomasinelli C, Thiemermann C, Boccuzzi G, Fantozzi R (2009) Insulin reduces cerebral ischemia/reperfusion injury in the hippocampus of diabetic rats: a role for glycogen synthase kinase-3beta. Diabetes 58(1):235–242. doi:10.2337/db08-0691

    Article  PubMed  CAS  Google Scholar 

  69. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig 122(4):1316–1338. doi:10.1172/JCI59903

    Article  PubMed  CAS  Google Scholar 

  70. Park SA (2011) A common pathogenic mechanism linking type-2 diabetes and Alzheimer's disease: evidence from animal models. J Clin Neurol 7(1):10–18. doi:10.3988/jcn.2011.7.1.10

    Article  PubMed  Google Scholar 

  71. Li ZG, Zhang W, Sima AA (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56(7):1817–1824. doi:10.2337/db07-0171

    Article  PubMed  CAS  Google Scholar 

  72. Shingo AS, Kanabayashi T, Murase T, Kito S (2012) Cognitive decline in STZ-3 V rats is largely due to dysfunctional insulin signalling through the dentate gyrus. Behav Brain Res 229(2):378–383. doi:10.1016/j.bbr.2012.01.034

    Article  PubMed  CAS  Google Scholar 

  73. Zemva J, Schubert M (2011) Central insulin and insulin-like growth factor-1 signaling: implications for diabetes associated dementia. Curr Diabetes Rev 7(5):356–366

    Article  PubMed  CAS  Google Scholar 

  74. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22(1):246–260. doi:10.1096/fj.06-7703com

    Article  PubMed  CAS  Google Scholar 

  75. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21(8):2561–2570

    PubMed  CAS  Google Scholar 

  76. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40(6):1087–1093

    Article  PubMed  CAS  Google Scholar 

  77. Leal MC, Fernandez Gamba A, Morelli L, Castano EM (2009) Cerebral proteolysis of amiloid-b peptide: relevance of insulin-degrading enzyme in Alzheimer's disease. Medicina 69(4):466–472

    PubMed  CAS  Google Scholar 

  78. Parihar MS, Brewer GJ (2010) Amyloid-beta as a modulator of synaptic plasticity. J Alzheimers Dis 22(3):741–763. doi:10.3233/JAD-2010-101020

    PubMed  CAS  Google Scholar 

  79. Brezar V, Carel JC, Boitard C, Mallone R (2011) Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 32(5):623–669. doi:10.1210/er.2011-0010

    Article  PubMed  CAS  Google Scholar 

  80. Al-Qatati A, Winter PW, Wolf-Ringwall AL, Chatterjee PB, Van Orden AK, Crans DC, Roess DA, Barisas BG (2012) Insulin receptors and downstream substrates associate with membrane microdomains after treatment with insulin or chromium(III) picolinate. Cell Biochem Biophys 62(3):441–450. doi:10.1007/s12013-011-9326-x

    Article  PubMed  CAS  Google Scholar 

  81. Denley A, Carroll JM, Brierley GV, Cosgrove L, Wallace J, Forbes B, Roberts CT Jr (2007) Differential activation of insulin receptor substrates 1 and 2 by insulin-like growth factor-activated insulin receptors. Mol Cell Biol 27(10):3569–3577. doi:10.1128/MCB.01447-06

    Article  PubMed  CAS  Google Scholar 

  82. Hulmi JJ, Silvennoinen M, Lehti M, Kivela R, Kainulainen H (2012) Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy. Am J Physiol Endocrinol Metab 302(3):E307–E315. doi:10.1152/ajpendo.00398.2011

    Article  PubMed  CAS  Google Scholar 

  83. Machado-Neto JA, Favaro P, Lazarini M, Costa FF, Olalla Saad ST, Traina F (2011) Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta 1813(8):1404–1411. doi:10.1016/j.bbamcr.2011.04.002

    Article  PubMed  CAS  Google Scholar 

  84. Duarte AI, Moreira PI, Oliveira CR (2012) Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012:384017. doi:10.1155/2012/384017

    PubMed  Google Scholar 

  85. Schultze SM, Jensen J, Hemmings BA, Tschopp O, Niessen M (2011) Promiscuous affairs of PKB/AKT isoforms in metabolism. Arch Physiol Biochem 117(2):70–77. doi:10.3109/13813455.2010.539236

    Article  PubMed  CAS  Google Scholar 

  86. Bayascas JR (2008) Dissecting the role of the 3-phosphoinositide-dependent protein kinase-1 (PDK1) signalling pathways. Cell Cycle 19:2978–2982

    Article  Google Scholar 

  87. Maeda H, Rajesh KG, Maeda H, Suzuki R, Sasaguri S (2004) Epidermal growth factor and insulin inhibit cell death in pancreatic beta cells by activation of PI3-kinase/AKT signaling pathway under oxidative stress. Transplant Proc 36(4):1163–1165. doi:10.1016/j.transproceed.2004.04.018

    Article  PubMed  CAS  Google Scholar 

  88. Ohtsubo K, Chen MZ, Olefsky JM, Marth JD (2011) Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport. Nat Med 17(9):1067–1075. doi:10.1038/nm.2414

    Article  PubMed  CAS  Google Scholar 

  89. Bornfeldt KE, Tabas I (2011) Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab 14(5):575–585. doi:10.1016/j.cmet.2011.07.015

    Article  PubMed  CAS  Google Scholar 

  90. Henriksen EJ (2010) Dysregulation of glycogen synthase kinase-3 in skeletal muscle and the etiology of insulin resistance and type 2 diabetes. Curr Diabetes Rev 6(5):285–293

    Article  PubMed  CAS  Google Scholar 

  91. Saini V (2010) Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 1(3):68–75. doi:10.4239/wjd.v1.i3.68

    Article  PubMed  Google Scholar 

  92. Szeman B, Nagy G, Varga T, Veres-Szekely A, Sasvari M, Fitala D, Szollosi A, Katonai R, Kotyuk E, Somogyi A (2012) Changes in cognitive function in patients with diabetes mellitus. Orv Hetil 153(9):323–329. doi:10.1556/OH.2012.29319

    Article  PubMed  Google Scholar 

  93. Freude S, Hettich MM, Schumann C, Stohr O, Koch L, Kohler C, Udelhoven M, Leeser U, Muller M, Kubota N, Kadowaki T, Krone W, Schroder H, Bruning JC, Schubert M (2009) Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer's disease. FASEB J 23(10):3315–3324. doi:10.1096/fj.09-132043

    Article  PubMed  CAS  Google Scholar 

  94. Killick R, Scales G, Leroy K, Causevic M, Hooper C, Irvine EE, Choudhury AI, Drinkwater L, Kerr F, Al-Qassab H, Stephenson J, Yilmaz Z, Giese KP, Brion JP, Withers DJ, Lovestone S (2009) Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem Biophys Res Commun 386(1):257–262. doi:10.1016/j.bbrc.2009.06.032

    Article  PubMed  CAS  Google Scholar 

  95. Dong X, Park S, Lin X, Copps K, Yi X, White MF (2006) Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Investig 116(1):101–114. doi:10.1172/JCI25735

    Article  PubMed  CAS  Google Scholar 

  96. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650–1656. doi:10.1016/j.cub.2004.08.026

    Article  PubMed  CAS  Google Scholar 

  97. Draznin B (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55(8):2392–2397. doi:10.2337/db06-0391

    Article  PubMed  CAS  Google Scholar 

  98. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283(3):E413–E422. doi:10.1152/ajpendo.00514.2001

    PubMed  CAS  Google Scholar 

  99. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871. doi:10.1016/j.cell.2012.02.017

    Article  PubMed  CAS  Google Scholar 

  100. Zhang H, Dellsperger KC, Zhang C (2012) The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol 107(1):237. doi:10.1007/s00395-011-0237-1

    Article  PubMed  Google Scholar 

  101. Dey D, Basu D, Roy SS, Bandyopadhyay A, Bhattacharya S (2006) Involvement of novel PKC isoforms in FFA induced defects in insulin signaling. Mol Cell Endocrinol 246(1–2):60–64. doi:10.1016/j.mce.2005.12.014

    Article  PubMed  CAS  Google Scholar 

  102. Timmers S, de Vogel-van den Bosch J, Hesselink MK, van Beurden D, Schaart G, Ferraz MJ, Losen M, Martinez-Martinez P, De Baets MH, Aerts JM, Schrauwen P (2011) Paradoxical increase in TAG and DAG content parallel the insulin sensitizing effect of unilateral DGAT1 overexpression in rat skeletal muscle. PLoS One 6(1):e14503. doi:10.1371/journal.pone.0014503

    Article  PubMed  CAS  Google Scholar 

  103. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. J Neurochem 111(1):242–249. doi:10.1111/j.1471-4159.2009.06320.x

    Article  PubMed  CAS  Google Scholar 

  104. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. J Pathol 225(1):54–62. doi:10.1002/path.2912

    Article  PubMed  CAS  Google Scholar 

  105. Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, Masliah E (2008) Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J Neurosci Res 86(15):3265–3274. doi:10.1002/jnr.21787

    Article  PubMed  CAS  Google Scholar 

  106. Waite K, Eickholt BJ (2010) The neurodevelopmental implications of PI3K signaling. Curr Top Microbiol Immunol 346:245–265. doi:10.1007/82_2010_82

    Article  PubMed  CAS  Google Scholar 

  107. Peyrou M, Bourgoin L, Foti M (2010) PTEN in liver diseases and cancer. World J Gastroenterol 16(37):4627–4633

    Article  PubMed  CAS  Google Scholar 

  108. Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, Schmid AC, Mirabelli M, Pomeranz KM, Erneux C, Lam EW, Vilar R, Woscholski R (2006) A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 1(12):780–790. doi:10.1021/cb600352f

    Article  PubMed  CAS  Google Scholar 

  109. Barbour LA, Shao J, Qiao L, Leitner W, Anderson M, Friedman JE, Draznin B (2004) Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 145(3):1144–1150. doi:10.1210/en.2003-1297

    Article  PubMed  CAS  Google Scholar 

  110. Kirwan JP, Varastehpour A, Jing M, Presley L, Shao J, Friedman JE, Catalano PM (2004) Reversal of insulin resistance postpartum is linked to enhanced skeletal muscle insulin signaling. J Clin Endocrinol Metab 89(9):4678–4684. doi:10.1210/jc.2004-0749

    Article  PubMed  CAS  Google Scholar 

  111. Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR (2002) Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol 22(3):965–977

    Article  PubMed  CAS  Google Scholar 

  112. Liao Y, Hung MC (2010) Physiological regulation of Akt activity and stability. Am J Transl Res 2(1):19–42

    PubMed  CAS  Google Scholar 

  113. Tan SX, Ng Y, Meoli CC, Kumar A, Khoo PS, Fazakerley DJ, Junutula JR, Vali S, James DE, Stockli J (2012) Amplification and demultiplexing in insulin-regulated Akt protein kinase pathway in adipocytes. J Biol Chem 287(9):6128–6138. doi:10.1074/jbc.M111.318238

    Article  PubMed  CAS  Google Scholar 

  114. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, Soos MA, Murgatroyd PR, Williams RM, Acerini CL, Dunger DB, Barford D, Umpleby AM, Wareham NJ, Davies HA, Schafer AJ, Stoffel M, O'Rahilly S, Barroso I (2004) A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304(5675):1325–1328. doi:10.1126/science.1096706

    Article  PubMed  CAS  Google Scholar 

  115. Xu N, Lao Y, Zhang Y, Gillespie DA (2012) Akt: a double-edged sword in cell proliferation and genome stability. J Oncol 2012:951724. doi:10.1155/2012/951724

    Article  PubMed  CAS  Google Scholar 

  116. Sakamaki J, Daitoku H, Ueno K, Hagiwara A, Yamagata K, Fukamizu A (2011) Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc Natl Acad Sci U S A 108(15):6085–6090. doi:10.1073/pnas.1015328108

    Article  PubMed  CAS  Google Scholar 

  117. Wolfrum C, Besser D, Luca E, Stoffel M (2003) Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci U S A 100(20):11624–11629. doi:10.1073/pnas.1931483100

    Article  PubMed  CAS  Google Scholar 

  118. Zhao X, Gan L, Pan H, Kan D, Majeski M, Adam SA, Unterman TG (2004) Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J 378(Pt 3):839–849. doi:10.1042/BJ20031450

    Article  PubMed  CAS  Google Scholar 

  119. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  120. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. doi:10.1126/science.1106148

    Article  PubMed  CAS  Google Scholar 

  121. Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21(10):589–598. doi:10.1016/j.tem.2010.06.005

    Article  PubMed  CAS  Google Scholar 

  122. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57(4):945–957. doi:10.2337/db07-0922

    Article  PubMed  CAS  Google Scholar 

  123. 2Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, Sonenberg N (2007) Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest 117(2):387–396. doi:10.1172/JCI29528

    Article  PubMed  CAS  Google Scholar 

  124. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. doi:10.1038/nrm2672

    Article  PubMed  CAS  Google Scholar 

  125. Mariappan MM (2012) Signaling mechanisms in the regulation of renal matrix metabolism in diabetes. Exp Diabetes Res 2012:749812. doi:10.1155/2012/749812

    Article  PubMed  CAS  Google Scholar 

  126. Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403(2):217–234. doi:10.1042/BJ20070024

    Article  PubMed  CAS  Google Scholar 

  127. Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional Insights from Cell Biology and Animal Models. Front Mol Neurosci 4:40. doi:10.3389/fnmol.2011.00040

    Article  PubMed  CAS  Google Scholar 

  128. Medina M, Garrido JJ, Wandosell FG (2011) Modulation of GSK-3 as a therapeutic strategy on tau pathologies. Front Mol Neurosci 4:24. doi:10.3389/fnmol.2011.00024

    Article  PubMed  CAS  Google Scholar 

  129. Poljsak B (2011) Strategies for reducing or preventing the generation of oxidative stress. Oxidative Med Cell Longev 2011:194586. doi:10.1155/2011/194586

    CAS  Google Scholar 

  130. Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23(18):7084–7092

    PubMed  CAS  Google Scholar 

  131. Maher PA, Schubert DR (2009) Metabolic links between diabetes and Alzheimer's disease. Expert Rev Neurother 9(5):617–630. doi:10.1586/ern.09.18

    Article  PubMed  CAS  Google Scholar 

  132. Besnard A, Galan-Rodriguez B, Vanhoutte P, Caboche J (2011) Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci 5:35. doi:10.3389/fnins.2011.00035

    Article  PubMed  CAS  Google Scholar 

  133. Jeanneteau F, Deinhardt K (2011) Fine-tuning MAPK signaling in the brain: the role of MKP-1. Commun Integr Biol 4(3):281–283. doi:10.4161/cib.4.3.14766

    Article  PubMed  Google Scholar 

  134. Sharma SK, Carew TJ (2004) The roles of MAPK cascades in synaptic plasticity and memory in Aplysia: facilitatory effects and inhibitory constraints. Learn Mem 11(4):373–378. doi:10.1101/lm.81104

    Article  PubMed  Google Scholar 

  135. Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25(4):431–439. doi:10.1016/S0197-4580(03)00126-X

    Article  PubMed  CAS  Google Scholar 

  136. Hu JF, Niu F, Ning N, Duan WZ, Chu SF, Xue W, Yuan YH, Chen NH, Zhang JT (2012) Activation of ERK1/2-CREB pathway during potentiating synaptic transmission of (−)clausenamide in rat dentate gyrus. J Asian Nat Prod Res 14(3):256–262. doi:10.1080/10286020.2011.650885

    Article  PubMed  CAS  Google Scholar 

  137. Chico LK, Van Eldik LJ, Watterson DM (2009) Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 8(11):892–909. doi:10.1038/nrd2999

    Article  PubMed  CAS  Google Scholar 

  138. Munoz L, Ammit AJ (2010) Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology 58(3):561–568. doi:10.1016/j.neuropharm.2009.11.010

    Article  PubMed  CAS  Google Scholar 

  139. Kelleher I, Garwood C, Hanger DP, Anderton BH, Noble W (2007) Kinase activities increase during the development of tauopathy in htau mice. J Neurochem 103(6):2256–2267. doi:10.1111/j.1471-4159.2007.04930.x

    Article  PubMed  CAS  Google Scholar 

  140. Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S (2011) Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol 68(1):51–57. doi:10.1001/archneurol.2010.225

    Article  PubMed  Google Scholar 

  141. Zhao WQ, Townsend M (2009) Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta 1792(5):482–496. doi:10.1016/j.bbadis.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  142. Scheepers A, Joost HG, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enter Nutr 28(5):364–371

    Article  CAS  Google Scholar 

  143. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24(8):855–872

    Article  PubMed  CAS  Google Scholar 

  144. Gomez Ravetti M, Rosso OA, Berretta R, Moscato P (2010) Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus' gene expression profiles in Alzheimer's disease. PLoS One 5(4):e10153. doi:10.1371/journal.pone.0010153

    Article  PubMed  CAS  Google Scholar 

  145. Hooijmans CR, Graven C, Dederen PJ, Tanila H, van Groen T, Kiliaan AJ (2007) Amyloid beta deposition is related to decreased glucose transporter-1 levels and hippocampal atrophy in brains of aged APP/PS1 mice. Brain Res 1181:93–103. doi:10.1016/j.brainres.2007.08.063

    Article  PubMed  CAS  Google Scholar 

  146. Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582(2):359–364. doi:10.1016/j.febslet.2007.12.035

    Article  PubMed  CAS  Google Scholar 

  147. Cavedo E, Frisoni GB (2011) The dynamic marker hypothesis of Alzheimer's disease and its implications for clinical imaging. Q J Nucl Med Mol Imaging 55(3):237–249

    PubMed  CAS  Google Scholar 

  148. Garrido GE, Furuie SS, Buchpiguel CA, Bottino CM, Almeida OP, Cid CG, Camargo CH, Castro CC, Glabus MF, Busatto GF (2002) Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer's disease: a combined MRI and SPECT study. J Neurol Neurosurg Psychiatry 73(5):508–516

    Article  PubMed  CAS  Google Scholar 

  149. Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 97(11):6037–6042. doi:10.1073/pnas.090106797

    Article  PubMed  CAS  Google Scholar 

  150. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci U S A 101(1):284–289. doi:10.1073/pnas.2635903100

    Article  PubMed  CAS  Google Scholar 

  151. Valla J, Gonzalez-Lima F, Reiman EM (2008) FDG autoradiography reveals developmental and pathological effects of mutant amyloid in PDAPP transgenic mice. Int J Dev Neurosci 26(3–4):253–258. doi:10.1016/j.ijdevneu.2008.02.003

    Article  PubMed  CAS  Google Scholar 

  152. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57(5):695–703. doi:10.1002/ana.20474

    Article  PubMed  CAS  Google Scholar 

  153. Huang HM, Ou HC, Xu H, Chen HL, Fowler C, Gibson GE (2003) Inhibition of alpha-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, and necrotic cell death. J Neurosci Res 74(2):309–317. doi:10.1002/jnr.10756

    Article  PubMed  CAS  Google Scholar 

  154. Moreira PI, Santos MS, Oliveira CR (2007) Alzheimer's disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal 9(10):1621–1630. doi:10.1089/ars.2007.1703

    Article  PubMed  CAS  Google Scholar 

  155. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820. doi:10.1038/414813a

    Article  PubMed  CAS  Google Scholar 

  156. Yamagishi S (2011) Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 12(14):2096–2102

    Article  PubMed  CAS  Google Scholar 

  157. Goh SY, Cooper ME (2008) Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93(4):1143–1152. doi:10.1210/jc.2007-1817

    Article  PubMed  CAS  Google Scholar 

  158. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G, Funatsu Y, Nakamichi N, Nagai T, Mizoguchi H, Ibi D, Hori O, Ogawa S, Stern DM, Yamada K, Yan SS (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A 106(47):20021–20026. doi:10.1073/pnas.0905686106

    PubMed  CAS  Google Scholar 

  159. Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH (2002) Ageing and diabetes: implications for brain function. Eur J Pharmacol 441(1–2):1–14

    Article  PubMed  CAS  Google Scholar 

  160. Yan SD, Bierhaus A, Nawroth PP, Stern DM (2009) RAGE and Alzheimer's disease: a progression factor for amyloid-beta-induced cellular perturbation? J Alzheimers Dis 16(4):833–843. doi:10.3233/JAD-2009-1030

    PubMed  Google Scholar 

  161. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382(6593):685–691. doi:10.1038/382685a0

    Article  PubMed  CAS  Google Scholar 

  162. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9(7):907–913. doi:10.1038/nm890

    Article  PubMed  CAS  Google Scholar 

  163. Sato N, Takeda S, Uchio-Yamada K, Ueda H, Fujisawa T, Rakugi H, Morishita R (2011) Role of insulin signaling in the interaction between Alzheimer disease and diabetes mellitus: a missing link to therapeutic potential. Cur Aging Sci 4(2):118–127

    Article  CAS  Google Scholar 

  164. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Investig 122(4):1377–1392. doi:10.1172/JCI58642

    Article  PubMed  CAS  Google Scholar 

  165. Xiong F, Leonov S, Howard AC, Xiong S, Zhang B, Mei L, McNeil P, Simon S, Xiong WC (2011) Receptor for advanced glycation end products (RAGE) prevents endothelial cell membrane resealing and regulates F-actin remodeling in a beta-catenin-dependent manner. J Biol Chem 286(40):35061–35070. doi:10.1074/jbc.M111.261073

    Article  PubMed  CAS  Google Scholar 

  166. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci U S A 101(29):10804–10809. doi:10.1073/pnas.0400348101

    Article  PubMed  CAS  Google Scholar 

  167. Robertson LA, Moya KL, Breen KC (2004) The potential role of tau protein O-glycosylation in Alzheimer's disease. J Alzheimers Dis 6(5):489–495

    PubMed  CAS  Google Scholar 

  168. Majumdar G, Wright J, Markowitz P, Martinez-Hernandez A, Raghow R, Solomon SS (2004) Insulin stimulates and diabetes inhibits O-linked N-acetylglucosamine transferase and O-glycosylation of Sp1. Diabetes 53(12):3184–3192

    Article  PubMed  CAS  Google Scholar 

  169. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain 132(Pt 7):1820–1832. doi:10.1093/brain/awp099

    Article  PubMed  Google Scholar 

  170. Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8(4):393–399. doi:10.1038/nchembio.797

    Article  PubMed  CAS  Google Scholar 

  171. Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 71(3):365–376. doi:10.1111/j.1365-2125.2010.03830.x

    Article  PubMed  CAS  Google Scholar 

  172. Ramasamy R, Yan SF, Schmidt AM (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243:88–102. doi:10.1111/j.1749-6632.2011.06320.x

    Article  PubMed  CAS  Google Scholar 

  173. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Munch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer's disease. Neurobiol Aging 32(5):763–777. doi:10.1016/j.neurobiolaging.2009.04.016

    Article  PubMed  CAS  Google Scholar 

  174. Kroner Z (2009) The relationship between Alzheimer's disease and diabetes: type 3 diabetes? Altern Med Rev 14(4):373–379

    PubMed  Google Scholar 

  175. Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci 12(5):284–296. doi:10.1038/nrn3012

    Article  PubMed  CAS  Google Scholar 

  176. Taskinen MR (2002) Diabetic dyslipidemia. Atheroscler Suppl 3(1):47–51

    Article  PubMed  CAS  Google Scholar 

  177. Roland I, De Leval X, Evrard B, Pirotte B, Dogne JM, Delattre L (2004) Modulation of the arachidonic cascade with omega3 fatty acids or analogues: potential therapeutic benefits. Mini Rev Med Chem 4(6):659–668

    Article  PubMed  CAS  Google Scholar 

  178. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468):1415–1428. doi:10.1016/S0140-6736(05)66378-7

    Article  PubMed  CAS  Google Scholar 

  179. Hayashi H (2011) Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 34(4):453–461

    Article  PubMed  CAS  Google Scholar 

  180. Jenkins AJ, Best JD, Klein RL, Lyons TJ (2004) Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metabol Res Rev 20(5):349–368. doi:10.1002/dmrr.491

    Article  CAS  Google Scholar 

  181. Lutjohann D (2006) Cholesterol metabolism in the brain: importance of 24S-hydroxylation. Acta Neurol Scand Suppl 185:33–42. doi:10.1111/j.1600-0404.2006.00683.x

    Article  PubMed  CAS  Google Scholar 

  182. Hamel FG, Upward JL, Bennett RG (2003) In vitro inhibition of insulin-degrading enzyme by long-chain fatty acids and their coenzyme A thioesters. Endocrinology 144(6):2404–2408

    Article  PubMed  CAS  Google Scholar 

  183. Hillered L, Chan PH (1988) Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. J Neurosci Res 20(4):451–456. doi:10.1002/jnr.490200407

    Article  PubMed  CAS  Google Scholar 

  184. Firuzi O, Zhuo J, Chinnici CM, Wisniewski T, Pratico D (2008) 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer's disease. FASEB J 22(4):1169–1178. doi:10.1096/fj.07-9131.com

    Article  PubMed  CAS  Google Scholar 

  185. Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, Halabisky B, Cisse M, Scearce-Levie K, Cheng IH, Gan L, Palop JJ, Bonventre JV, Mucke L (2008) Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat Neurosci 11(11):1311–1318. doi:10.1038/nn.2213

    Article  PubMed  CAS  Google Scholar 

  186. Cherny VV, Henderson LM, Xu W, Thomas LL, DeCoursey TE (2001) Activation of NADPH oxidase-related proton and electron currents in human eosinophils by arachidonic acid. J Physiol 535(Pt 3):783–794

    Article  PubMed  CAS  Google Scholar 

  187. Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci Off J Soc Neurosci 26(43):11111–11119. doi:10.1523/JNEUROSCI.3505-06.2006

    Article  CAS  Google Scholar 

  188. Penzo D, Petronilli V, Angelin A, Cusan C, Colonna R, Scorrano L, Pagano F, Prato M, Di Lisa F, Bernardi P (2004) Arachidonic acid released by phospholipase A(2) activation triggers Ca(2+)-dependent apoptosis through the mitochondrial pathway. J Biol Chem 279(24):25219–25225. doi:10.1074/jbc.M310381200

    Article  PubMed  CAS  Google Scholar 

  189. Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141(6):1423–1432

    Article  PubMed  CAS  Google Scholar 

  190. Puccio S, Chu J, Pratico D (2011) Involvement of 5-lipoxygenase in the corticosteroid-dependent amyloid beta formation: in vitro and in vivo evidence. PLoS One 6(1):e15163. doi:10.1371/journal.pone.0015163

    Article  PubMed  CAS  Google Scholar 

  191. Claria J (2003) Cyclooxygenase-2 biology. Curr Pharm Des 9(27):2177–2190

    Article  PubMed  CAS  Google Scholar 

  192. Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103(1):1–16. doi:10.1111/j.1471-4159.2007.04670.x

    Article  PubMed  CAS  Google Scholar 

  193. Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6(10):551–559. doi:10.1038/nrneurol.2010.130

    Article  PubMed  CAS  Google Scholar 

  194. Yaffe K (2007) Metabolic syndrome and cognitive decline. Curr Alzheimer Res 4(2):123–126

    Article  PubMed  CAS  Google Scholar 

  195. Dietschy JM, Turley SD (2001) Cholesterol metabolism in the brain. Curr Opin Lipidol 12(2):105–112

    Article  PubMed  CAS  Google Scholar 

  196. Bjorkhem I (2006) Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med 260(6):493–508. doi:10.1111/j.1365-2796.2006.01725.x

    Article  PubMed  CAS  Google Scholar 

  197. Chang TY, Chang CC, Ohgami N, Yamauchi Y (2006) Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22:129–157. doi:10.1146/annurev.cellbio.22.010305.104656

    Article  PubMed  CAS  Google Scholar 

  198. Heverin M, Meaney S, Lutjohann D, Diczfalusy U, Wahren J, Bjorkhem I (2005) Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J Lipid Res 46(5):1047–1052. doi:10.1194/jlr.M500024-JLR200

    Article  PubMed  CAS  Google Scholar 

  199. Ladu MJ, Reardon C, Van Eldik L, Fagan AM, Bu G, Holtzman D, Getz GS (2000) Lipoproteins in the central nervous system. Ann N Y Acad Sci 903:167–175

    Article  PubMed  CAS  Google Scholar 

  200. Bhattacharyya R, Kovacs DM (2010) ACAT inhibition and amyloid beta reduction. Biochim Biophys Acta 1801(8):960–965. doi:10.1016/j.bbalip.2010.04.003

    Article  PubMed  CAS  Google Scholar 

  201. Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A, Moir RD, Domnitz SB, Frosch MP, Windisch M, Kovacs DM (2004) The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron 44(2):227–238. doi:10.1016/j.neuron.2004.08.043

    Article  PubMed  CAS  Google Scholar 

  202. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 95(11):6460–6464

    Article  PubMed  CAS  Google Scholar 

  203. Vetrivel KS, Thinakaran G (2010) Membrane rafts in Alzheimer's disease beta-amyloid production. Biochim Biophys Acta 1801(8):860–867. doi:10.1016/j.bbalip.2010.03.007

    Article  PubMed  CAS  Google Scholar 

  204. Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58(5):681–693. doi:10.1016/j.neuron.2008.04.010

    Article  PubMed  CAS  Google Scholar 

  205. Peila R, Rodriguez BL, Launer LJ, Honolulu-Asia Aging S (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu–Asia Aging Study. Diabetes 51(4):1256–1262

    Article  PubMed  CAS  Google Scholar 

  206. Belinson H, Lev D, Masliah E, Michaelson DM (2008) Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J Neurosci Off J Soc Neurosci 28(18):4690–4701. doi:10.1523/JNEUROSCI.5633-07.2008

    Article  CAS  Google Scholar 

  207. Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, Dee Fish J, Wyss-Coray T, Buttini M, Mucke L, Mahley RW, Huang Y (2004) Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci Off J Soc Neurosci 24(10):2527–2534. doi:10.1523/JNEUROSCI.4315-03.2004

    Article  CAS  Google Scholar 

  208. Luchsinger JA (2012) Type 2 diabetes and cognitive impairment: linking mechanisms. J Alzheimers Dis 30:S185–S198. doi:10.3233/JAD-2012-111433

    PubMed  Google Scholar 

  209. Chaudhary R, Likidlilid A, Peerapatdit T, Tresukosol D, Srisuma S, Ratanamaneechat S, Sriratanasathavorn C (2012) Apolipoprotein E gene polymorphism: effects on plasma lipids and risk of type 2 diabetes and coronary artery disease. Cardiovasc Diabetol 11:36. doi:10.1186/1475-2840-11-36

    Article  PubMed  CAS  Google Scholar 

  210. Hayden MR, Clee SM, Brooks-Wilson A, Genest J Jr, Attie A, Kastelein JJ (2000) Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency. Curr Opin Lipidol 11(2):117–122

    Article  PubMed  CAS  Google Scholar 

  211. Koldamova R, Fitz NF, Lefterov I (2010) The role of ATP-binding cassette transporter A1 in Alzheimer's disease and neurodegeneration. Biochim Biophys Acta 1801(8):824–830. doi:10.1016/j.bbalip.2010.02.010

    Article  PubMed  CAS  Google Scholar 

  212. Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY, Tansley GH, Cohn JS, Hayden MR, Wellington CL (2004) Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 279(39):41197–41207. doi:10.1074/jbc.M407962200

    Article  PubMed  CAS  Google Scholar 

  213. Wang XT, Li J, Liu L, Hu N, Jin S, Liu C, Mei D, Liu XD (2012) Tissue cholesterol content alterations in streptozotocin-induced diabetic rats. Acta Pharmacol Sin 33(7):909–917. doi:10.1038/aps.2012.50

    Article  PubMed  CAS  Google Scholar 

  214. Lei P, Wu WH, Li RW, Ma JW, Yu YP, Cui W, Zhao YF, Li YM (2008) Prevention and promotion effects of apolipoprotein E4 on amylin aggregation. Biochem Biophys Res Commun 368(2):414–418. doi:10.1016/j.bbrc.2008.01.103

    Article  PubMed  CAS  Google Scholar 

  215. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. doi:10.1016/j.neuron.2008.10.010

    Article  PubMed  CAS  Google Scholar 

  216. Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR (2009) An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer's disease. J Alzheimers Dis 16(4):741–761. doi:10.3233/JAD-2009-0972

    PubMed  Google Scholar 

  217. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. doi:10.1093/hmg/ddp326

    Article  PubMed  CAS  Google Scholar 

  218. Perez-Matute P, Zulet MA, Martinez JA (2009) Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol 9(6):771–779. doi:10.1016/j.coph.2009.08.005

    Article  PubMed  CAS  Google Scholar 

  219. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87. doi:10.1016/j.tox.2011.03.001

    Article  PubMed  CAS  Google Scholar 

  220. Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN (2011) Hydrogen peroxide probes directed to different cellular compartments. PLoS One 6(1):e14564. doi:10.1371/journal.pone.0014564

    Article  PubMed  CAS  Google Scholar 

  221. Jiang D, Li X, Williams R, Patel S, Men L, Wang Y, Zhou F (2009) Ternary complexes of iron, amyloid-beta, and nitrilotriacetic acid: binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer's disease. Biochemistry 48(33):7939–7947. doi:10.1021/bi900907a

    Article  PubMed  CAS  Google Scholar 

  222. Lipinski B (2011) Hydroxyl radical and its scavengers in health and disease. Oxidative Med Cell Longev 2011:809696. doi:10.1155/2011/809696

    Google Scholar 

  223. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  224. Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53(1):1–2

    PubMed  CAS  Google Scholar 

  225. Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59(4–5):290–294. doi:10.1016/j.neuropharm.2010.04.005

    Article  PubMed  CAS  Google Scholar 

  226. Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frolich L, Riepe MW, Dodel R, Leyhe T, Bertram L, Hoffmann W, Faltraco F, German Task Force on Alzheimer's D (2011) The future of Alzheimer's disease: the next 10 years. Prog Neurobiol 95(4):718–728. doi:10.1016/j.pneurobio.2011.11.008

    Article  PubMed  Google Scholar 

  227. Pratico D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer's disease. Am J Med 109(7):577–585

    Article  PubMed  CAS  Google Scholar 

  228. Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3. doi:10.3389/fnene.2012.00003

    Article  CAS  Google Scholar 

  229. Readnower RD, Sauerbeck AD, Sullivan PG (2011) Mitochondria, amyloid beta, and Alzheimer's disease. Int J Alzheimers Dis 2011:104545. doi:10.4061/2011/104545

    PubMed  Google Scholar 

  230. Sultana R, Butterfield DA (2011) Identification of the oxidative stress proteome in the brain. Free Radic Biol Med 50(4):487–494. doi:10.1016/j.freeradbiomed.2010.11.021

    Article  PubMed  CAS  Google Scholar 

  231. Ceriello A, Mercuri F, Quagliaro L, Assaloni R, Motz E, Tonutti L, Taboga C (2001) Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 44(7):834–838. doi:10.1007/s001250100529

    Article  PubMed  CAS  Google Scholar 

  232. Douglas G, Bendall JK, Crabtree MJ, Tatham AL, Carter EE, Hale AB, Channon KM (2012) Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE(−)/(−) mice. Cardiovasc Res 94(1):20–29. doi:10.1093/cvr/cvs026

    Article  PubMed  CAS  Google Scholar 

  233. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212(2):167–178. doi:10.1016/j.taap.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  234. Zhu X, Perry G, Smith MA, Wang X (2012) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Alzheimers Dis. doi:10.3233/JAD-2012-129005

  235. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochem Biokhim 70(2):200–214

    Article  CAS  Google Scholar 

  236. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472. doi:10.1016/j.exger.2010.01.003

    Article  PubMed  CAS  Google Scholar 

  237. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. doi:10.1042/BJ20081386

    Article  PubMed  CAS  Google Scholar 

  238. Selivanov VA, Votyakova TV, Pivtoraiko VN, Zeak J, Sukhomlin T, Trucco M, Roca J, Cascante M (2011) Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol 7(3):e1001115. doi:10.1371/journal.pcbi.1001115

    Article  PubMed  CAS  Google Scholar 

  239. Ten VS, Starkov A (2012) Hypoxic–ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol Res Int 2012:542976. doi:10.1155/2012/542976

    PubMed  Google Scholar 

  240. Spuch C, Ortolano S, Navarro C (2012) New insights in the amyloid-beta interaction with mitochondria. J Aging Res 2012:324968. doi:10.1155/2012/324968

    PubMed  Google Scholar 

  241. Drechsel DA, Estevez AG, Barbeito L, Beckman JS (2012) Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS. Neurotox Res. doi:10.1007/s12640-012-9322-y

  242. Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, Nakamura M, Nunomura A, Perry G (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19(1):363–372. doi:10.3233/JAD-2010-1239

    PubMed  Google Scholar 

  243. Di Domenico F, Coccia R, Butterfield DA, Perluigi M (2011) Circulating biomarkers of protein oxidation for Alzheimer disease: expectations within limits. Biochim Biophys Acta 1814(12):1785–1795. doi:10.1016/j.bbapap.2011.10.001

    Article  PubMed  CAS  Google Scholar 

  244. Lim YA, Grimm A, Giese M, Mensah-Nyagan AG, Villafranca JE, Ittner LM, Eckert A, Gotz J (2011) Inhibition of the mitochondrial enzyme ABAD restores the amyloid-beta-mediated deregulation of estradiol. PLoS One 6(12):e28887. doi:10.1371/journal.pone.0028887

    Article  PubMed  CAS  Google Scholar 

  245. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 304(5669):448–452. doi:10.1126/science.1091230

    Article  PubMed  CAS  Google Scholar 

  246. Janciauskiene S, Ahren B (2000) Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem Biophys Res Commun 267(2):619–625. doi:10.1006/bbrc.1999.1989

    Article  PubMed  CAS  Google Scholar 

  247. Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ (2005) Thiol reducing compounds prevent human amylin-evoked cytotoxicity. FEBS J 272(19):4949–4959. doi:10.1111/j.1742-4658.2005.04903.x

    Article  PubMed  CAS  Google Scholar 

  248. Folli F, Guzzi V, Perego L, Coletta DK, Finzi G, Placidi C, La Rosa S, Capella C, Socci C, Lauro D, Tripathy D, Jenkinson C, Paroni R, Orsenigo E, Cighetti G, Gregorini L, Staudacher C, Secchi A, Bachi A, Brownlee M, Fiorina P (2010) Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients' skin which are normalized by kidney–pancreas transplantation. PLoS One 5(3):e9923. doi:10.1371/journal.pone.0009923

    Article  PubMed  CAS  Google Scholar 

  249. Gersten RA, Gretebeck LM, Hildick-Smith G, Sandwick RK (2010) Maillard reaction of ribose 5-phosphate generates superoxide and glycation products for bovine heart cytochrome c reduction. Carbohydr Res 345(17):2499–2506. doi:10.1016/j.carres.2010.09.013

    Article  PubMed  CAS  Google Scholar 

  250. Kassab A, Piwowar A (2012) Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 94(9):1837–1848. doi:10.1016/j.biochi.2012.01.020

    Article  PubMed  CAS  Google Scholar 

  251. Munusamy S, MacMillan-Crow LA (2009) Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Free Radic Biol Med 46(8):1149–1157. doi:10.1016/j.freeradbiomed.2009.01.022

    Article  PubMed  CAS  Google Scholar 

  252. Pacher P, Szabo C (2005) Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 7(11–12):1568–1580. doi:10.1089/ars.2005.7.1568

    Article  PubMed  CAS  Google Scholar 

  253. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115. doi:10.2144/000113610

    Article  PubMed  CAS  Google Scholar 

  254. Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW (2004) Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 53(3):726–734

    Article  PubMed  CAS  Google Scholar 

  255. Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, Boccuzzi G (2005) Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol 187(1):37–44. doi:10.1677/joe.1.06269

    Article  PubMed  CAS  Google Scholar 

  256. Cardoso S, Carvalho C, Santos R, Correia S, Santos MS, Seica R, Oliveira CR, Moreira PI (2011) Impact of STZ-induced hyperglycemia and insulin-induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse 65(6):457–466. doi:10.1002/syn.20863

    Article  PubMed  CAS  Google Scholar 

  257. Raza H, Prabu SK, John A, Avadhani NG (2011) Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci 12(5):3133–3147. doi:10.3390/ijms12053133

    Article  PubMed  CAS  Google Scholar 

  258. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.223545

    Article  PubMed  CAS  Google Scholar 

  259. Rahmadi A, Steiner N, Munch G (2011) Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer's disease. Clin Chem Lab Med 49(3):385–391. doi:10.1515/CCLM.2011.079

    Article  PubMed  CAS  Google Scholar 

  260. Thomas MC (2011) Advanced glycation end products. Contrib Nephrol 170:66–74. doi:10.1159/000324945

    Article  PubMed  CAS  Google Scholar 

  261. Higaki Y, Mikami T, Fujii N, Hirshman MF, Koyama K, Seino T, Tanaka K, Goodyear LJ (2008) Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol Endocrinol Metab 294(5):E889–E897. doi:10.1152/ajpendo.00150.2007

    Article  PubMed  CAS  Google Scholar 

  262. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G (2010) Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 7(1):15–25. doi:10.1900/RDS.2010.7.15

    Article  PubMed  Google Scholar 

  263. Pessler D, Rudich A, Bashan N (2001) Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter. Diabetologia 44(12):2156–2164. doi:10.1007/s001250100024

    Article  PubMed  CAS  Google Scholar 

  264. Powell DJ, Hajduch E, Kular G, Hundal HS (2003) Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol 23(21):7794–7808

    Article  PubMed  CAS  Google Scholar 

  265. Corsinovi L, Biasi F, Poli G, Leonarduzzi G, Isaia G (2011) Dietary lipids and their oxidized products in Alzheimer's disease. Mol Nutr Food Res 55(Suppl 2):S161–S172. doi:10.1002/mnfr.201100208

    Article  PubMed  CAS  Google Scholar 

  266. Yang H, Jin X, Kei Lam CW, Yan SK (2011) Oxidative stress and diabetes mellitus. Clin Chem Lab Med CCLM/FESCC 49(11):1773–1782. doi:10.1515/CCLM.2011.250

    CAS  Google Scholar 

  267. Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RA, Sultana R (2012) Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal. doi:10.1089/ars.2011.4109

  268. Otaegui-Arrazola A, Menendez-Carreno M, Ansorena D, Astiasaran I (2010) Oxysterols: a world to explore. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 48(12):3289–3303. doi:10.1016/j.fct.2010.09.023

    CAS  Google Scholar 

  269. Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G (2009) Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry. Curr Med Chem 16(6):685–705

    Article  PubMed  CAS  Google Scholar 

  270. Famer D, Meaney S, Mousavi M, Nordberg A, Bjorkhem I, Crisby M (2007) Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the alpha-secretase pathway. Biochem Biophys Res Commun 359(1):46–50. doi:10.1016/j.bbrc.2007.05.033

    Article  PubMed  CAS  Google Scholar 

  271. Chen CT, Green JT, Orr SK, Bazinet RP (2008) Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fat Acids 79(3–5):85–91. doi:10.1016/j.plefa.2008.09.003

    Article  CAS  Google Scholar 

  272. Florent-Bechard S, Desbene C, Garcia P, Allouche A, Youssef I, Escanye MC, Koziel V, Hanse M, Malaplate-Armand C, Stenger C, Kriem B, Yen-Potin FT, Olivier JL, Pillot T, Oster T (2009) The essential role of lipids in Alzheimer's disease. Biochimie 91(6):804–809. doi:10.1016/j.biochi.2009.03.004

    Article  PubMed  CAS  Google Scholar 

  273. Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 283(23):15539–15543. doi:10.1074/jbc.R800001200

    Article  PubMed  CAS  Google Scholar 

  274. Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N (2010) Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic Res 44(10):1172–1202. doi:10.3109/10715762.2010.498476

    Article  PubMed  CAS  Google Scholar 

  275. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58(5):730–735. doi:10.1002/ana.20629

    Article  PubMed  CAS  Google Scholar 

  276. Mufson EJ, Leurgans S (2010) Inability of plasma and urine F2A-isoprostane levels to differentiate mild cognitive impairment from Alzheimer's disease. Neurodegener Dis 7(1–3):139–142. doi:10.1159/000289224

    Article  PubMed  CAS  Google Scholar 

  277. Greilberger J, Fuchs D, Leblhuber F, Greilberger M, Wintersteiger R, Tafeit E (2010) Carbonyl proteins as a clinical marker in Alzheimer's disease and its relation to tryptophan degradation and immune activation. Clin Lab 56(9–10):441–448

    PubMed  CAS  Google Scholar 

  278. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S (2010) Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci 86(1–2):39–44. doi:10.1016/j.lfs.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  279. Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48(12):1570–1576. doi:10.1016/j.freeradbiomed.2010.02.016

    Article  PubMed  CAS  Google Scholar 

  280. Dang TN, Arseneault M, Murthy V, Ramassamy C (2010) Potential role of acrolein in neurodegeneration and in Alzheimer's disease. Curr Mol Pharmacol 3(2):66–78

    PubMed  Google Scholar 

  281. Singh M, Dang TN, Arseneault M, Ramassamy C (2010) Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein. J Alzheimers Dis 21(3):741–756. doi:10.3233/JAD-2010-100405

    PubMed  CAS  Google Scholar 

  282. Bacot S, Bernoud-Hubac N, Baddas N, Chantegrel B, Deshayes C, Doutheau A, Lagarde M, Guichardant M (2003) Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J Lipid Res 44(5):917–926. doi:10.1194/jlr.M200450-JLR200

    Article  PubMed  CAS  Google Scholar 

  283. Butterfield DA, Bader Lange ML, Sultana R (2010) Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease. Biochim Biophys Acta 1801(8):924–929. doi:10.1016/j.bbalip.2010.02.005

    Article  PubMed  CAS  Google Scholar 

  284. Siegel SJ, Bieschke J, Powers ET, Kelly JW (2007) The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry 46(6):1503–1510. doi:10.1021/bi061853s

    Article  PubMed  CAS  Google Scholar 

  285. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374. doi:10.1089/ars.2007.1957

    Article  PubMed  CAS  Google Scholar 

  286. Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30(2):225–243. doi:10.3109/03602539808996310

    Article  PubMed  CAS  Google Scholar 

  287. Widmer R, Ziaja I, Grune T (2006) Protein oxidation and degradation during aging: role in skin aging and neurodegeneration. Free Radic Res 40(12):1259–1268. doi:10.1080/10715760600911154

    Article  PubMed  CAS  Google Scholar 

  288. Schopfer FJ, Baker PR, Freeman BA (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28(12):646–654. doi:10.1016/j.tibs.2003.10.006

    Article  PubMed  CAS  Google Scholar 

  289. Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA (2006) Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 22(1):76–87. doi:10.1016/j.nbd.2005.10.004

    Article  PubMed  CAS  Google Scholar 

  290. Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883–898. doi:10.1016/j.freeradbiomed.2007.06.014

    Article  PubMed  CAS  Google Scholar 

  291. Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I (2004) S-Glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 8(2):201–212

    Article  PubMed  CAS  Google Scholar 

  292. Komosinska-Vassev K, Olczyk P, Winsz-Szczotka K, Kuznik-Trocha K, Klimek K, Olczyk K (2011) Age- and gender-related alteration in plasma advanced oxidation protein products (AOPP) and glycosaminoglycan (GAG) concentrations in physiological ageing. Clin Chem Lab Med, doi:10.1515/CCLM.2011.789

  293. Kovacic P, Somanathan R (2011) Cell signaling and receptors in toxicity of advanced glycation end products (AGEs): alpha-dicarbonyls, radicals, oxidative stress and antioxidants. J Recept Signal Transduct Res 31(5):332–339. doi:10.3109/10799893.2011.607171

    Article  PubMed  CAS  Google Scholar 

  294. Kalousova M, Skrha J, Zima T (2002) Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res Acad Sci Bohemoslovaca 51(6):597–604

    CAS  Google Scholar 

  295. Aldred S, Bennett S, Mecocci P (2010) Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer's disease. Clin Biochem 43(3):267–271. doi:10.1016/j.clinbiochem.2009.08.021

    Article  PubMed  CAS  Google Scholar 

  296. Wehr H, Bednarska-Makaruk M, Graban A, Lipczynska-Lojkowska W, Rodo M, Bochynska A, Ryglewicz D (2009) Paraoxonase activity and dementia. J Neurol Sci 283(1–2):107–108. doi:10.1016/j.jns.2009.02.317

    Article  PubMed  CAS  Google Scholar 

  297. Malinski T (2007) Nitric oxide and nitroxidative stress in Alzheimer's disease. J Alzheimers Dis 11(2):207–218

    PubMed  CAS  Google Scholar 

  298. Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44(8):1493–1505. doi:10.1016/j.freeradbiomed.2008.01.002

    Article  PubMed  CAS  Google Scholar 

  299. Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96(3):825–832. doi:10.1111/j.1471-4159.2005.03615.x

    Article  PubMed  CAS  Google Scholar 

  300. Lovell MA, Markesbery WR (2008) Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 29(2):169–175. doi:10.1016/j.nbd.2007.07.030

    Article  PubMed  CAS  Google Scholar 

  301. Morocz M, Kalman J, Juhasz A, Sinko I, McGlynn AP, Downes CS, Janka Z, Rasko I (2002) Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer's disease. Neurobiol Aging 23(1):47–53

    Article  PubMed  CAS  Google Scholar 

  302. Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res 35(22):7497–7504. doi:10.1093/nar/gkm821

    Article  PubMed  CAS  Google Scholar 

  303. Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 118(1):151–166. doi:10.1007/s00401-009-0508-1

    Article  PubMed  CAS  Google Scholar 

  304. Tal TL, Tanguay RL (2012) Non-coding RNAs—novel targets in neurotoxicity. Neurotoxicology 33(3):530–544. doi:10.1016/j.neuro.2012.02.013

    Article  PubMed  CAS  Google Scholar 

  305. Golbidi S, Ebadi SA, Laher I (2011) Antioxidants in the treatment of diabetes. Curr Diabetes Rev 7(2):106–125

    Article  PubMed  CAS  Google Scholar 

  306. Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4(1):5. doi:10.1186/1475-2840-4-5

    Article  PubMed  CAS  Google Scholar 

  307. Vina J, Lloret A, Giraldo E, Badia MC, Alonso MD (2011) Antioxidant pathways in Alzheimer's disease: possibilities of intervention. Curr Pharm Des 17(35):3861–3864

    Article  PubMed  CAS  Google Scholar 

  308. Chakroborty S, Stutzmann GE (2011) Early calcium dysregulation in Alzheimer's disease: setting the stage for synaptic dysfunction. Sci China Life Sci 54(8):752–762. doi:10.1007/s11427-011-4205-7

    Article  PubMed  CAS  Google Scholar 

  309. Jeitner TM, Pinto JT, Krasnikov BF, Horswill M, Cooper AJ (2009) Transglutaminases and neurodegeneration. J Neurochem 109(Suppl 1):160–166. doi:10.1111/j.1471-4159.2009.05843.x

    Article  PubMed  CAS  Google Scholar 

  310. Kim S, Rhim H (2011) Effects of amyloid-beta peptides on voltage-gated L-type Ca(V)1.2 and Ca(V)1.3 Ca(2+) channels. Mol Cells 32(3):289–294. doi:10.1007/s10059-011-0075-x

    Article  PubMed  CAS  Google Scholar 

  311. Wiederkehr A, Wollheim CB (2008) Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic beta-cell. Cell Calcium 44(1):64–76. doi:10.1016/j.ceca.2007.11.004

    Article  PubMed  CAS  Google Scholar 

  312. Fernyhough P, Calcutt NA (2010) Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 47(2):130–139. doi:10.1016/j.ceca.2009.11.008

    Article  PubMed  CAS  Google Scholar 

  313. Verkhratsky A, Fernyhough P (2008) Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium 44(1):112–122. doi:10.1016/j.ceca.2007.11.010

    Article  PubMed  CAS  Google Scholar 

  314. Strum JC, Shehee R, Virley D, Richardson J, Mattie M, Selley P, Ghosh S, Nock C, Saunders A, Roses A (2007) Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 11(1):45–51

    PubMed  CAS  Google Scholar 

  315. Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T (2011) Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32(9):1626–1633. doi:10.1016/j.neurobiolaging.2009.10.009

    Article  PubMed  CAS  Google Scholar 

  316. Chesik D, De Keyser J, Wilczak N (2008) Insulin-like growth factor system regulates oligodendroglial cell behavior: therapeutic potential in CNS. J Mol Neurosci 35(1):81–90. doi:10.1007/s12031-008-9041-2

    Article  PubMed  CAS  Google Scholar 

  317. Chen LM, Lin ZY, Zhu YG, Lin N, Zhang J, Pan XD, Chen XC (2012) Ginsenoside Rg1 attenuates beta-amyloid generation via suppressing PPARgamma-regulated BACE1 activity in N2a-APP695 cells. Eur J Pharmacol 675(1–3):15–21. doi:10.1016/j.ejphar.2011.11.039

    Article  PubMed  CAS  Google Scholar 

  318. Nicolakakis N, Hamel E (2011) Neurovascular function in Alzheimer's disease patients and experimental models. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 31(6):1354–1370. doi:10.1038/jcbfm.2011.43

    Article  CAS  Google Scholar 

  319. Sodhi RK, Singh N, Jaggi AS (2011) Neuroprotective mechanisms of peroxisome proliferator-activated receptor agonists in Alzheimer's disease. Naunyn Schmiedeberg's Arch Pharmacol 384(2):115–124. doi:10.1007/s00210-011-0654-6

    Article  CAS  Google Scholar 

  320. Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T (2009) Pioglitazone improved cognition in a pilot study on patients with Alzheimer's disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc 57(1):177–179. doi:10.1111/j.1532-5415.2009.02067.x

    Article  PubMed  Google Scholar 

  321. Zhao Q, Matsumoto K, Tsuneyama K, Tanaka K, Li F, Shibahara N, Miyata T, Yokozawa T (2011) Diabetes-induced central cholinergic neuronal loss and cognitive deficit are attenuated by tacrine and a Chinese herbal prescription, kangen-karyu: elucidation in type 2 diabetes db/db mice. J Pharmacol Sci 117(4):230–242

    Article  PubMed  CAS  Google Scholar 

  322. Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335(6075):1503–1506. doi:10.1126/science.1217697

    Article  PubMed  CAS  Google Scholar 

  323. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P (2001) A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7(1):161–171

    Article  PubMed  CAS  Google Scholar 

  324. Lefebvre P, Benomar Y, Staels B (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 21(11):676–683. doi:10.1016/j.tem.2010.06.009

    Article  PubMed  CAS  Google Scholar 

  325. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45(2):120–159. doi:10.1016/j.plipres.2005.12.002

    Article  PubMed  CAS  Google Scholar 

  326. Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, Thompson RC, Zhao Y, Smith L, Gasparini L, Luo Z, Xu H, Liao FF (2009) Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A 106(10):3907–3912. doi:10.1073/pnas.0807991106

    Article  PubMed  CAS  Google Scholar 

  327. Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Kohler A, Glossmann H, Schneider R, Sutherland C, Schweiger S (2010) Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A 107(50):21830–21835. doi:10.1073/pnas.0912793107

    Article  PubMed  CAS  Google Scholar 

  328. Gupta A, Bisht B, Dey CS (2011) Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes. Neuropharmacology 60(6):910–920. doi:10.1016/j.neuropharm.2011.01.033

    Article  PubMed  CAS  Google Scholar 

  329. Markaki M, Tavernarakis N (2010) Modeling human diseases in Caenorhabditis elegans. Biotechnol J 5(12):1261–1276. doi:10.1002/biot.201000183

    Article  PubMed  CAS  Google Scholar 

  330. Morcos M, Hutter H (2009) The model Caenorhabditis elegans in diabetes mellitus and Alzheimer's disease. J Alzheimers Dis 16(4):897–908. doi:10.3233/JAD-2009-0977

    PubMed  Google Scholar 

  331. Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR, Luo Y (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol 48(6):725–731

    PubMed  CAS  Google Scholar 

  332. Dostal V, Link CD (2010) Assaying beta-amyloid toxicity using a transgenic C. elegans model. Journal of visualized experiments : JoVE (44). doi:10.3791/2252

  333. Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1):e8758. doi:10.1371/journal.pone.0008758

    Article  PubMed  CAS  Google Scholar 

  334. Saharia K, Arya U, Kumar R, Sahu R, Das CK, Gupta K, Dwivedi H, Subramaniam JR (2012) Reserpine modulates neurotransmitter release to extend lifespan and alleviate age-dependent Abeta proteotoxicity in Caenorhabditis elegans. Exp Gerontol 47(2):188–197. doi:10.1016/j.exger.2011.12.006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I highly acknowledge Dr. Paul R Ebert (Associate Professor, School of Biological Sciences, University of Queensland, Australia), Mr. Andrew Johnston (School of Biological Sciences, The University of Queensland, Australia) and Sultan Asad (Centre of Excellence in Molecular Biology, Lahore, Pakistan) for innovating suggestions and proof reading.

Conflict of interests

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, W. Overlapped Metabolic and Therapeutic Links between Alzheimer and Diabetes. Mol Neurobiol 47, 399–424 (2013). https://doi.org/10.1007/s12035-012-8352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8352-z

Keywords

Navigation