Skip to main content

Advertisement

Log in

\(\hbox {C}_{3}\hbox {N}_{4}\) supported on chitosan for simple and easy recovery of visible light active efficient photocatalysts

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

To investigate the photocatalytic activities of heterogeneous systems under visible light, graphitic carbon nitride (g-\(\hbox {C}_{3}\hbox {N}_{4})\) and chitosan (CS) were chosen as a model system. By solution cast method, \(\hbox {C}_{3}\hbox {N}_{4}\) were embedded into a CS biopolymer matrix in this study. The purpose is to degrade methyl orange (MO) using a novel \(\hbox {C}_{3}\hbox {N}_{4}\)/CS nanocomposite thin film. Using a visible light-equipped photoreactor with a tungsten incandescent lamp, photo-decolourization of dye was carried out. To catalyse the photodegradation of organic dye pollutant MO, a \(\hbox {C}_{3}\hbox {N}_{4}\)/CS nanocomposite film photocatalyst was found to be successful and a recovery of 100% of the photocatalyst is achieved by a simple new hand-picking technique. Using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy and UV–visible diffuse reflectance spectroscopy, detailed characterization was carried out. \(\hbox {C}_{3}\hbox {N}_{4}\)/CS has high capacity and better photocatalytic activity compared to g-\(\hbox {C}_{3}\hbox {N}_{4}\) and CS, because \(\hbox {C}_{3}\hbox {N}_{4}\) possesses a larger surface area and CS has high absorption efficiency which is indicated by the photocatalytic discolouration of MO under visible light irradiation. The \(\hbox {C}_{3}\hbox {N}_{4}\)/CS nanocomposite thin film photocatalyst is regarded as an excellent catalyst with 98% degradation efficiency and is prepared by the simple solution cast method. The total organic carbon value was measured to be 86%. These values evidence that the mineralization of MO was carried out under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vinu R and Madras G 2010 J. Indian Inst. Sci. 90 189

    CAS  Google Scholar 

  2. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C et al 2002 Appl. Catal. B 39 75

    CAS  Google Scholar 

  3. Rauf M A, Meetani M A, Khaleel A and Ahmed A 2010 Chem. Eng. J. 157 373

    CAS  Google Scholar 

  4. Keng C S, Zainal Z and Abdullah A H 2008 Malaysian J. Anal. Sci. 12 451

    Google Scholar 

  5. Zulkarnain Z, Kong H L, Zobir H M, Halim A A and Reshid I 2009 J. Hazard. Mater. 164 138

    Google Scholar 

  6. Nasuha N, Hameed B H and Din A T M 2010 J. Hazard. Mater. 175 126

    CAS  Google Scholar 

  7. Shakir K, Elkafrawy A F, Ghoneimy H F, Elrab Beheir S G and Refaat M 2010 Water Res. 44 1449

    CAS  Google Scholar 

  8. Ahmad A L and Puesa S W 2007 Chem. Eng. J. 132 257

    CAS  Google Scholar 

  9. Jirankova H, Mrezek J, Dolocek P and Cak J 2010 Desalin. Water Treat. 20 96

    CAS  Google Scholar 

  10. Juang R S, Huang W C and Hsu Y H 2008 J. Hazard. Mater. 164 146

    Google Scholar 

  11. Ayed L, Chaieb K, Charaf A and Bakhrouf A 2010 Desalination 260 137

    CAS  Google Scholar 

  12. Merouani S, Hamdaoui O, Saoudi F and Chiha M 2010 Chem. Eng. J. 158 550

    CAS  Google Scholar 

  13. Tehrani-Bagha A R, Mahmoodi N M and Manger F M 2010 Desalination 260 34

    CAS  Google Scholar 

  14. Diebold U 2003 Surf. Sci. Rep. 48 53

    CAS  Google Scholar 

  15. Kumar P S, Selvakumar M, Babu S G, Karuthapandian S and Chattopadhyay S 2015 Mater. Lett. 151 45

    Google Scholar 

  16. Kumar P S, Selvakumar M, Babu S G and Karuthapandian S 2016 Mater. Res. Bull. 83 522

    CAS  Google Scholar 

  17. Babu S G, Vijayan A, Neppolian B and Ashokkumar M 2015 Mater. Focus 4 272

    CAS  Google Scholar 

  18. Rinaudo M 2006 Prog. Polym. Sci. 31 603

    CAS  Google Scholar 

  19. Karim Z, Mathew A P, Grahn M, Mouzon J and Oksman K 2014 Carbohydr. Polym. 112 668

    CAS  Google Scholar 

  20. Alzahrani E 2014 Int. J. Adv. Sci. Technol. Res. 4 755

    Google Scholar 

  21. Ren I, Yan X, Zhou J, Tong J and Su X 2017 Int. J. Biol. Macromol. 105 1636

    CAS  Google Scholar 

  22. Zhou J, Dong Z, Yang H, Shi Z, Zhou X and Li R 2013 Appl. Surf. Sci. 279 360

    CAS  Google Scholar 

  23. Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F et al 2009 Angew. Chem. Int. Ed. 48 5916

    CAS  Google Scholar 

  24. Kumar S, Singhal N, Singh R K, Gupta P and Jain S L 2015 Dalton Trans. 44 11860

    CAS  Google Scholar 

  25. Islomov S, Likhtenshtein P K, Marupov R M, Likhtenshtein G I and Zhbankov R G 1986 Cell. Chem. Technol. 20 277

    CAS  Google Scholar 

  26. Arthi R, Babu S G and Jayachandran R 2013 Am. J. PharmTech Res. 3 23

    Google Scholar 

  27. Arshadi M, Faraji A R and Mehravar M 2015 J. Colloid Interface Sci. 440 91

    CAS  Google Scholar 

  28. Wang X, Maeda K, Thomas A, Takanabe K, Xin G and Carlsson J M 2009 Nat. Mater. 8 76

    CAS  Google Scholar 

  29. Wang Y, Wang X C and Antonietti M 2012 Angew. Chem. Int. Ed. 51 68

    CAS  Google Scholar 

  30. Yang X, Tu Y, Li L, Shang S and Tao X M 2010 ACS Appl. Mater. Interfaces 2 1707

    CAS  Google Scholar 

  31. Cheng Q, Dvan J, Zhang Q and Jiang L 2015 ACS Nano 9 2231

    CAS  Google Scholar 

  32. Wan S, Peng J, Li Y, Hu H, Jiang L and Cheng Q 2015 ACS Nano 9 9830

    CAS  Google Scholar 

  33. Travlou N A, Kyzas G Z, Lazaridis N K and Deliyanni E A 2013 Chem. Eng. J. 217 256

    CAS  Google Scholar 

  34. Li X, Zhou H, Wu W, Wei S, Xu Y and Kuang Y 2015 J. Colloid Interface Sci. 448 389

    CAS  Google Scholar 

  35. Senthil Kumar P, Selvakumar M, Babu S G, Saravana Kumar J, Karuthapandian S and Santanu C 2015 RSC Adv. 5 57493

    CAS  Google Scholar 

  36. Li L H, Deng J C, Deng H R, Lin Z L and Xin L 2010 Carbohydrate Res. 345 994

    CAS  Google Scholar 

  37. Di J, Xia J, Yin S, Xu H, Xu L, Xu Y et al 2014 J. Mater. Chem. A 2 5340

    CAS  Google Scholar 

  38. Yan S C, Li Z S and Zou Z G 2009 Langmuir 25 10397

    CAS  Google Scholar 

  39. Tian F, Liu Y, Hu K and Zhao B 2003 J. Mater. Sci. 38 4709

    CAS  Google Scholar 

  40. Ji Z, Shengtang Z, Guangpeng W, Wenqiang W, Sufang G, Ji Z et al 2016 J. Bioact. Compat. Polym. 22 429

    Google Scholar 

  41. Kumar P S, Selvakumar M, Bhagabati P, Bharathi B, Karuthapandian S and Balakumar S 2014 RSC Adv. 4 32977

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to The Principal and Management, Panimalar Engineering College, Poonamallee and The Principal and Management, Sri Venkateswara College of Engineering, Sriperumbudur for their infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanly Samuel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan, K., Samuel, S., Kumar, P.S. et al. \(\hbox {C}_{3}\hbox {N}_{4}\) supported on chitosan for simple and easy recovery of visible light active efficient photocatalysts. Bull Mater Sci 43, 137 (2020). https://doi.org/10.1007/s12034-020-02107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02107-5

Keywords

Navigation