Skip to main content
Log in

A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, a new form of a Halpin–Tsai (H–T) micromechanical model is proposed to characterize the elastic modulus and tensile strength of carbon nanotube (CNT)-reinforced polymer nanocomposites. To this end, three critical factors, including random dispersion, non-straight shape and agglomerated state of the CNTs are appropriately incorporated into the H–T model. A comparison of the model predictions with some experiments on the CNT/polymer nanocomposites serves to verify the applicability of the proposed approach. It is found that the present predictions are in good agreement with the available experimental data. The results clearly reveal that for a more accurate prediction of the mechanical properties of the CNT/polymer nanocomposites, considering the random orientation, waviness and agglomeration of CNTs into the polymer matrix is critically essential. Also, some parametric studies are carried out to show the effects of volume fraction, non-straight shape, aspect ratio, mechanical characteristics and non-uniform dispersion of CNTs as well as matrix properties on the elastic modulus and tensile strength of CNT/polymer nanocomposites. The results reveal that it is necessary to eliminate the agglomeration and use the straight CNTs if the full potential of CNT reinforcement is to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saha S and Bal S 2017 Bull. Mater. Sci. 40 956

    Article  Google Scholar 

  2. Imani A and Farzi G 2015 Bull. Mater. Sci. 38 831

    Article  CAS  Google Scholar 

  3. Feng C and Jiang L 2013 Composites, Part A 47 149

    Article  Google Scholar 

  4. Yakobson B I, Campbell M P, Brabec C J and Bernholc J 1997 Comput. Mater. Sci. 8 341

    Article  CAS  Google Scholar 

  5. Lu J P 1997 Phys. Rev. Lett. 79 1297

    Article  CAS  Google Scholar 

  6. Kashyap K T, Koppad P G, Puneeth K B, Ram H A and Mallikarjuna H M 2011 Comput. Mater. Sci. 50 2493

    Article  CAS  Google Scholar 

  7. Treacy M J, Ebbesen T W and Gibson J M 1996 Nature 381 678

    Article  CAS  Google Scholar 

  8. Munir K S, Zheng Y, Zhang D, Lin J, Li Y and Wen C 2017 Mater. Sci. Eng. A 696 10

    Article  CAS  Google Scholar 

  9. Dai H, Wong E W and Lieber C M 1996 Nature 384 147

    Article  CAS  Google Scholar 

  10. Hone J, Whitney M, Piskoti C and Zettl A 1999 Phys. Rev. B 59 R2514

    Article  CAS  Google Scholar 

  11. Hassanzadeh-Aghdam M K, Ansari R and Darvizeh A 2018 Int. J. Eng. Sci. 130 215

    Article  CAS  Google Scholar 

  12. Shirasu K, Nakamura A, Yamamoto G, Ogasawara T, Shimamura Y, Inoue Y et al 2017 Composites, Part A 95 152

    Article  CAS  Google Scholar 

  13. Zhang J and He C 2008 Acta Mech. 196 33

    Article  Google Scholar 

  14. Pantano A and Cappello F 2008 Meccanica 43 263

    Article  Google Scholar 

  15. Hassanzadeh-Aghdam M K and Mahmoodi M J 2018 Mater. Sci. Eng. B 229 173

    Article  CAS  Google Scholar 

  16. Schadler L S, Giannaris S A and Ajayan P M 1998 Appl. Phys. Lett. 73 3842

    Article  CAS  Google Scholar 

  17. Qian D, Dickey E C, Andrews R and Rantell T 2000 Appl. Phys. Lett. 76 2868

    Article  CAS  Google Scholar 

  18. Allaoui A, Bai S, Cheng H M and Bai J B 2002 Compos. Sci. Technol. 62 1993

    Article  CAS  Google Scholar 

  19. Tai N H, Yeh M K and Liu J H 2004 Carbon 42 2774

    Article  CAS  Google Scholar 

  20. Sahoo N G, Jung Y C, Yoo H J and Cho J W 2007 Compos. Sci. Technol. 67 1920

    Article  CAS  Google Scholar 

  21. Omidi M, Milani A S, Seethaler R J and Araste R 2010 Carbon 48 3218

    Article  CAS  Google Scholar 

  22. Zhang L W, Cui W C and Liew K M 2015 Int. J. Mech. Sci. 103 9

    Article  Google Scholar 

  23. Hasanshahi B and Azadi M 2017 Iran. J. Sci. Technol. Trans. Mech. Eng. https://doi.org/10.1007/s40997-017-0137-6

  24. Farsadi M, Öchsner A and Rahmandoust M 2013 J. Compos. Mater. 47 1425

    Article  Google Scholar 

  25. Vijay S J, Tugirumubano A, Go S H, Kwac L K and Kim H G 2018 J. Alloys Compd. 731 465

    Article  CAS  Google Scholar 

  26. Kulakov V, Aniskevich A, Ivanov S, Poltimae T and Starkova O 2016 J. Compos. Mater. 51 2979

    Article  Google Scholar 

  27. An F, Lu C, Li Y, Guo J, Lu X, Lu H et al 2012 Mater. Des. 33 197

    Article  CAS  Google Scholar 

  28. Jen Y M and Huang C Y 2013 J. Compos. Mater. 47 1665

    Article  Google Scholar 

  29. Jia Y, Peng K, Gong X L and Zhang Z 2011 Int. J. Plast. 27 1239

    Article  CAS  Google Scholar 

  30. Han D, Mei H, Farhan S, Xiao S, Bai Q and Cheng L 2017 J. Alloys Compd. 701 722

    Article  CAS  Google Scholar 

  31. Prashantha K, Soulestin J, Lacrampe M F, Krawczak P, Dupin G and Claes M 2009 Compos. Sci. Technol. 69 1756

    Article  CAS  Google Scholar 

  32. Ren X and Seidel G D 2013 J. Intell. Mater. Sys. Struct. 24 1459

    Article  CAS  Google Scholar 

  33. Hassanzadeh M and Edalatpanah S 2018 Int. J. Nano Dimens. 9 112

    CAS  Google Scholar 

  34. Dong C 2014 Int. J. Smart Nano Mater. 5 44

    Article  CAS  Google Scholar 

  35. Hassanzadeh-Aghdam M K, Mahmoodi M J and Kazempour M R 2018 Int. J. Mech. Mater. Des. 14 266

    Article  Google Scholar 

  36. Hassanzadeh-Aghdam M K, Ansari R and Darvizeh A 2017 J. Compos. Mater. 51 2899

    Article  CAS  Google Scholar 

  37. Zare Y 2015 Mech. Mater. 85 1

    Article  Google Scholar 

  38. Fisher F T, Bradshaw R D and Brinson L C 2003 Compos. Sci. Technol. 63 1689

    Article  CAS  Google Scholar 

  39. Thostenson E T and Chou T W 2003 J. Phys. D: Appl. Phys. 36 573

    Article  CAS  Google Scholar 

  40. Anumandla V and Gibson R F 2006 Compos. Part A 37 2178

    Article  Google Scholar 

  41. Seidel G D and Lagoudas D C 2006 Mech. Mater. 38 884

    Article  Google Scholar 

  42. Kanagaraj S, Varanda F R, Zhil’tsova T V, Oliveira M S and Simões J A 2007 Compos. Sci. Technol. 67 3071

    Article  CAS  Google Scholar 

  43. Bokobza L 2007 Polymer 48 4907

    Article  CAS  Google Scholar 

  44. Yang Q S, He X Q, Liu X, Leng F F and Mai Y W 2012 Composites, Part B 43 33

    Article  Google Scholar 

  45. Ma X, Scarpa F, Peng H X, Allegri G, Yuan J and Ciobanu R 2015 Aerosp. Sci. Technol. 47 367

    Article  Google Scholar 

  46. Kiani Y 2016 Aerosp. Sci. Technol. 58 178

    Article  Google Scholar 

  47. Alibeigloo A 2016 Composites, Part B 87 214

    Article  CAS  Google Scholar 

  48. Jam J E and Kiani Y 2015 Compos. Struct. 132 35

    Article  Google Scholar 

  49. Mahmoodi M J and Vakilifard M 2017 Mater. Des. 122 347

    Article  CAS  Google Scholar 

  50. Yengejeh S I, Kazemi S A and Öchsner A 2017 Comput. Mater. Sci. 136 85

    Article  Google Scholar 

  51. Ci L and Bai J 2006 Compos. Sci. Technol. 66 599

    Article  CAS  Google Scholar 

  52. Valavala P K and Odegard G M 2005 Rev. Adv. Mater. Sci. 9 44

    Google Scholar 

  53. Odegard G M, Gates T S, Wise K E, Park C and Siochi E J 2003 Compos. Sci. Technol. 63 1671

    Article  CAS  Google Scholar 

  54. Halpin J C 1969 No. AFML-TR-67-423. Air force materials lab (OH: Wright-Patterson AFB)

  55. Affdl J C and Kardos J L 1976 Polym. Eng. Sci. 16 344

    Article  Google Scholar 

  56. Cox H L 1952 Br. J. Appl. Phys. 3 72

    Article  Google Scholar 

  57. Fisher F T, Bradshaw R D and Brinson L C 2002 Appl. Phys. Lett. 80 4647

    Article  CAS  Google Scholar 

  58. Demczyk B G, Wang Y M, Cumings J, Hetman M, Han W, Zettl A et al 2002 Mater. Sci. Eng. A 334 173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Hassanzadeh-Aghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh-Aghdam, M.K., Jamali, J. A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites. Bull Mater Sci 42, 117 (2019). https://doi.org/10.1007/s12034-019-1784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1784-6

Keywords

Navigation