Skip to main content
Log in

Micromechanical Constitutive Equations for the Effective Thermoelastic Properties of Carbon Nanotube-Reinforced Composites

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Predicting thermomechanical properties of composites containing carbon nanotubes (CNTs) is significantly depending on the assumed microstructural parameters (MSPs) of CNTs and CNT/matrix morphology. These MSPs include geometry, dispersion and orientation. On the other hand, CNT/matrix morphology refers to two microstructural observations. The first is whether or not an interphase exists between CNTs and matrix, whereas the second is whether or not voids exist due to, for example, debonding of CNTs. In this work, the aim is to propose micromechanical constitutive equations, which are based on the micromechanics principles of Eshelby and Mori-Tanaka models, for considering all of these MSPs altogether in addition to the other well-known MSPs. Accordingly, these equations can be used for modeling realistic nanocomposites to predict their effective thermomechanical properties in different directions. The obtained computational results are compared with other results of both experimental and theoretical investigations found in the literature, and good agreement is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lau, K.T.; Lu, M.; Liao, K.: Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites. Compos. Part A: Appl. Sci. Manuf. 37, 1837–1840 (2006)

    Article  Google Scholar 

  2. Andrews, R.; Weisenberger, M.C.: Carbon nanotube polymer composites. Curr. Opin. Solid State Mater Sci. 8, 31–37 (2004)

    Article  Google Scholar 

  3. Matveeva, A.Y.; Pyrlin, S.V.; Ramos, M.D.; Böhm, H.J.; Hattum, F.J.: Influence of waviness and curliness of fibres on mechanical properties of composites. Comput. Mater. Sci. 87, 1–11 (2014)

    Article  Google Scholar 

  4. Rafiee, R.: Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Compos. Struct. 97, 304–309 (2013)

    Article  Google Scholar 

  5. Shi, D.L.; Feng, X.Q.; Huang, Y.Y.: Hwang, K.C.; Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. ASME 126, 250–257 (2004)

  6. Joshi, U.A.; Sharma, S.C.; Harsha, S.P.: Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Compos. Part B: Eng. 43, 2063–2071 (2012)

    Article  Google Scholar 

  7. Tserpes, K.I.; Chanteli, A.: Parametric numerical evaluation of the effective elastic properties of carbon nanotube-reinforced polymers. Compos. Struct. 99, 366–374 (2013)

    Article  Google Scholar 

  8. Bradshaw, R.D.; Fisher, F.T.; Brinson, L.C.: Fiber waviness in nanotube-reinforced polymer composites–II: modeling via numerical approximation of the dilute strain concentration tensor. Compos. Sci. Technol. 63, 1705–1722 (2003)

    Article  Google Scholar 

  9. Fisher, F.; Bradshaw, R.; Brinson, L.: Fiber waviness in nanotube-reinforced polymer composites–I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63, 1689–1703 (2003)

    Article  Google Scholar 

  10. Zhang, J.; Tanaka, M.: Systematic study of thermal properties of CNT composites by the fast multipole hybrid boundary node method. Eng. Anal. Bound. Elements 31, 388–401 (2007)

    Article  MATH  Google Scholar 

  11. Yuan, Z.; Lu, Z.: Numerical analysis of elastic-plastic properties of polymer composite reinforced by wavy and random CNTs. Comput. Mater. Sci. 95, 610–619 (2014)

    Article  Google Scholar 

  12. Kundalwal, S.I.; Ray, M.C.: Improved thermoelastic coefficients of a novel short fuzzy fiber-reinforced composite with wavy carbon nanotubes. J. Mech. Mater. Struct. 9, 1–25 (2014)

    Article  Google Scholar 

  13. Odegard, G.M.; Gates, T.S.; Wise, K.E.; Park, C.; Siochi, E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)

    Article  Google Scholar 

  14. Karevan, M.; Pucha, R.V.; Bhuiyan, M.A.; Kalaitzidou, K.: Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett. 11, 325–331 (2010)

    Article  Google Scholar 

  15. Peng, R.D.; Zhou, H.W.; Wang Jr., H.W.; LM, : Modeling of nano-reinforced polymer composites: microstructure effect on Young’s modulus. Comput. Mater. Sci. 60, 19–31 (2012)

  16. Bhuiyan, M.A.; Pucha, R.V.; Worthy, J.; Karevan, M.; Kalaitzidou, K.: Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments. Compos. Struct. 95, 80–87 (2013)

    Article  Google Scholar 

  17. Shao, L.H.; Luo, R.Y.; Bai, S.L.; Wang, J.: Prediction of effective moduli of carbon nanotube-reinforced composites with waviness and debonding. Compos. Struct. 87, 274–281 (2009)

    Article  Google Scholar 

  18. Tohgo, K.; Cho, Y.: Theory of reinforcement damage in discontinuously-reinforced composites and its application. JSME Int. J. Ser. A 42, 521–529 (1999)

    Article  Google Scholar 

  19. Yasser, M.S.: Development of constitutive laws for thermo-mechanical behaviors of composites containing multi-type ellipsoidal reinforcements. Int. J. Solids Struct. 46, 824–836 (2009)

    Article  MATH  Google Scholar 

  20. Mesbah, A.; Zairi, F.; Boutaleb, S.; Gloaguen, J.M.; Nait-Abdelaziz, M.; Xie, S.; Boukharouba, T.; Lefebvre, J.M.: Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework. J. Appl. Polym. Sci. 114, 3274–3291 (2009)

    Article  MATH  Google Scholar 

  21. Nam, T.H.; Goto, K.; Yamaguchi, Y.; Premalal, E.A.; Shimamura, Y.; Inoue, Y.; Naito, K.; Ogihara, S.: Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites. Compos. Part A: Appl. Sci. Manuf. 76, 289–298 (2015)

    Article  Google Scholar 

  22. Shirasu, K.; Yamamoto, G.; Tamaki, I.; Ogasawara, T.; Shimamura, Y.; Inoue, Y.; Hashida, T.: Negative axial thermal expansion coefficient of carbon nanotubes: experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon 95, 904–909 (2015)

    Article  Google Scholar 

  23. Dominkovics, Z.; Hári, J.; Kovács, J.; Fekete, E.; Pukánszky, B.: Estimation of interphase thickness and properties in PP/layered silicate nanocomposites. Eur. Polym. J. 47, 1765–1774 (2011)

    Article  Google Scholar 

  24. Seidel, G.D.: Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites. PhD thesis, Texas A&M University (2007)

  25. Lan, T.; Pinnavaia, T.J.: Clay-reinforced epoxy nanocomposites. Chem. Mater. 6, 2216–2219 (1994)

    Article  Google Scholar 

  26. Fornes, T.D.; Paul, D.R.: Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003)

    Article  Google Scholar 

  27. Wang, X.; Jiang, Q.; Xu, W.; Cai, W.; Inoue, Y.; Zhu, Y.: Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites. Carbon 53, 145–152 (2013)

    Article  Google Scholar 

  28. Odegard, G.M.; Clancy, T.C.; Gates, T.S.: Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46, 553–562 (2005)

    Article  Google Scholar 

  29. Ray, M.C.; Kundalwal, S.I.: Effect of carbon nanotube waviness on the load transfer characteristics of short fuzzy fiber-reinforced composite. J. Nanomech. Micromech. 4, A4013010 (2014)

    Article  Google Scholar 

  30. Kundalwal, S.I.; Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225, 2621–2643 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kundalwal, S.I.; Ray, M.C.; Meguid, S.: Shear lag model for regularly staggered short fuzzy fiber reinforced composite. ASME J. Appl. Mech. 81, 091001 (2014)

    Article  Google Scholar 

  32. Kundalwal, S.I.; Ray, M.C.: Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. ASME J. Appl. Mech. 80, 021010 (2013)

    Article  Google Scholar 

  33. Kundalwal, S.I.; Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–131 (2016)

    Article  Google Scholar 

  34. Schelling, P.K.; Keblinski, P.: Thermal expansion of carbon structures. Phys. Rev. B 68, 035425 (2003)

    Article  Google Scholar 

  35. Jiang, H.; Liu, B.; Huang, Y.; Hwang, K.C.: Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265–270 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser M. Shabana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabana, Y.M., Morimoto, T. & Ashida, F. Micromechanical Constitutive Equations for the Effective Thermoelastic Properties of Carbon Nanotube-Reinforced Composites. Arab J Sci Eng 44, 763–776 (2019). https://doi.org/10.1007/s13369-018-3271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3271-6

Keywords

Navigation