Skip to main content
Log in

A three-phase cylindrical shear-lag model for carbon nanotube composites

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this article the viscoelastic behavior of carbon nanotubes (CNTs) reinforced composites is investigated theoretically by using the three-phase concentric cylindrical shell model along with shear-lag arguments. The parameters which influence the fiber stress, the matrix stress and the interfacial stress have been revealed. The aspect ratio of CNTs β t , the cross-sectional area ratio of CNTs β A , the matrix-to-fiber modulus ratio λ m and the interphase-to-fiber modulus ratio λ n are common influencing parameters of both the stresses in nanocomposites and the composite modulus. In addition, the effective composite modulus has three other influencing parameters of its own, i.e., the fiber volume fraction v f , the interphase volume fraction v n and the RVE-to-fiber length ratio η, whereas the stresses have their own influencing parameters of the RVE-to-fiber diameter ratio β R and the interphase-to-fiber diameter ratio β b . The modulus of CNTs composites depends strongly upon the modulus and thickness of the interphase. Carbon nanotube fibers improve the viscoelastic stiffness in the whole time period. However, the magnitude of modulus improvement does not vary monotonically with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thostenson E. T., Ren Z. and Chou T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61: 1899–1912

    Article  Google Scholar 

  2. Qian D., Wagner G. J., Liu W. K., Yu M. F. and Rouff R. S. (2002). Mechanics of carbon nanotubes. Appl. Mech. Rev. 22: 495–533

    Article  Google Scholar 

  3. Thostenson E. T., Li C. and Chou T.-W. (2005). Review: Nanocomposites in context. Compos. Sci. Technol. 65: 491–516

    Article  Google Scholar 

  4. Desai A. V. and Haque M. A. (2005). Review: Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct. 43: 1787–1803

    Article  Google Scholar 

  5. Tjong S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Engng. Res. 53: 73–197

    Article  Google Scholar 

  6. Breuer O. and Sundararaj U. (2004). Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Compos. 25: 630–645

    Article  Google Scholar 

  7. Xie X. L., Mai Y. W. and Zhou X. P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Engng. Ref. 49: 89–112

    Article  Google Scholar 

  8. Lau K. T. and Hui D. (2002). The revolutionary creation of new advanced materials-carbon nanotube composites. Composites Part B. 33: 263–277

    Article  Google Scholar 

  9. Lau K. T., Gu C. and Hui D. (2006). A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites Part B. 37: 425–436

    Article  Google Scholar 

  10. Jonathan N. C., Umar K., Werner J. B. and Yurii K. G. (2006). Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44: 1624–1652

    Article  Google Scholar 

  11. Gong X., Liu J., Baskaran S., Voise R. D. and Young J. S. (2005). Surfactant assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12: 1049–1052

    Article  Google Scholar 

  12. Qian D., Dickey E. C., Andrews R. and Rantell T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76: 2868–2870

    Article  Google Scholar 

  13. Tibbetts G. G. and McHugh J. (1999). Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. J. Mater. Res. 4: 2871–2880

    Article  Google Scholar 

  14. Xu X. J., Thwe M. M., Shearwood C. and Liao K. (2002). Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl. Phys. Lett. 81: 2833–2835

    Article  Google Scholar 

  15. Cadek M., Coleman J. N., Barron V., Hedicke K. and Blau W. J. (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 82: 5123–5125

    Article  Google Scholar 

  16. Ruan L. S., Gao P., Yang X. G. and Yu T. X. (2003). Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44: 5643–5654

    Article  Google Scholar 

  17. Gojny F. H., Wichmann M. H. G., Kopke U., Fiedler B. and Schulte K. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nantube content. Compos. Sci. Technol. 64: 2363–2371

    Article  Google Scholar 

  18. Gojny F. H., Wichmann M. H. G., Kopke U., Fiedler B. and Schulte K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative. Compos. Sci. Technol. 65: 2300–2313

    Article  Google Scholar 

  19. Andrew R., Jacques D., Minot M. and Rantell T. (2002). Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Engng. 287: 395–403

    Article  Google Scholar 

  20. Santare, M. H., Tang, W., Novotny, J. E., Advani, S. G.: Mechanical characterization of a nanotube-polyethylene composite material. In: Proceedings of IMECE’03, paper 43351.2003. ASME, Washington, DC

  21. Schadler L. S., Giannaris S. C. and Ajayan P. M. (1998). Load transfer in carbon epoxy composite. Appl. Phys. Lett. 73: 3842–3844

    Article  Google Scholar 

  22. Andrews R., Jacques D., Rao A. M., Rantell T., Derbyshire F. and Chen Y. (1999). Nanotube composites carbon fibers. Appl. Phys. Lett. 75: 1329–1331

    Article  Google Scholar 

  23. Vigolo B., Penicaud A., Coulon C., Sauder C., Pailler R. and Journet C. (2000). Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290: 1331–1334

    Article  Google Scholar 

  24. Thostenson E. T. and Chou T.-W. (2002). Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D: Appl. Phys. 35: 77–80

    Article  Google Scholar 

  25. Ajayan P. M., Schadler L. S., Giannaris C. and Rubio A. (2002). Single-walled nanotube-polymer composites: strength and weaknesses. Adv. Mater. 12: 750–753

    Article  Google Scholar 

  26. Gojny F. H., Wichmann, Nastalczyk J., Roslaniec Z., Schulte K. (2003). Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370: 820–824

    Article  Google Scholar 

  27. Ding D., Eitan A., Fisher F. T., Chen X., Dikin D. X., Andrews R., Brinson L. C., Schadler L. S. and Ruoff R. S. (2003). Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett. 11: 1593–1597

    Article  Google Scholar 

  28. Eitan A., Fisher F. T., Andrews R., Brinson L. C. and Schadler L. (2006). Reinforcement mechanisms in MWCNT- filled polycarbonate. Compos. Sci. Technol. 66: 1162–1173

    Article  Google Scholar 

  29. Fisher F. T. (2002). Nanomechanics and the viscoelastic behavior of carbon nanotube reinforced polymers. Mechanical Engineering, Northwestern University, Evanston, IL

    Google Scholar 

  30. Fisher, T. F., Lee, K. C., Brinson, L. C.: Elastic and viscoelastic properties of non-bulk polymer interphases in nanotube-reinforced polymers. SEM 2005 Annual Conference on Experimental and Applied Mechanics, June 7–9, Portland, OR (2005)

  31. Seidel G. D. and Lagoudas D. C. (2006). Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38: 884–907

    Article  Google Scholar 

  32. Gao X.-L. and Li K. (2005). A Shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42: 1649–1667

    Article  MATH  Google Scholar 

  33. Haque A. and Ramasetty A. (2005). Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71: 68–77

    Article  Google Scholar 

  34. Li C. and Chou T.-W. (2003). Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotech. 3: 1–8

    Article  Google Scholar 

  35. Chen X. L. and Liu Y. J. (2004). Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Compos. Sci. Technol. 29: 1–11

    Google Scholar 

  36. Chen X. L. and Liu Y. J. (2003). Evaluations of the effective material properties of carbon anotube-based composites using a nanoscale representative volume element. Mech. Mater. 35: 69–81

    Article  Google Scholar 

  37. Hu N., Fukunaga H., Lu C., Kameyana M. and Yan B. (2005). Prediction of elastic properties of carbon nanotube reinforced composites. Proc. R. Soc. A 461: 1685–1710

    Article  Google Scholar 

  38. Hu, N., Fukunaga, H.: Prediction of macroscopic mechanical properties of carbon nanotube reinforced composites. International Conference on Smart Materials Structures and Systems, July 8–30, Bangalore, India (2005)

  39. Liu Y. J. and Chen X. L. (2003). Continuum models of carbon nanotube-based composites using the boundary element method. Electron. J. Bound. Elements l: 316–335

    Google Scholar 

  40. Qian D., Dickey E. C., Andrews R. and Rantell T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76: 2868–2870

    Article  Google Scholar 

  41. Lau K. T. and Shi S. Q. (2002). Failure mechanics of carbon nanotube/epoxy composites pretreated in different temperature environments. Carbon 40: 965–968

    Article  Google Scholar 

  42. Wei C. Y., Cho K. and Srivastava D. (2003). Tensile yielding of multiwall carbon nanotubes. Appl. Phys. Lett. 82: 2512–2514

    Article  Google Scholar 

  43. Lau K. T., Chipara M., Ling H. Y. and Hui D. (2004). On the effective elastic moduli of carbon nanotubes for nanocomposites structures. Composites Part B. 35: 95–101

    Article  Google Scholar 

  44. Christensen R. M. (1982). Theory of Viscoelasticity: An Introduction. Academic, New York

    Google Scholar 

  45. McCartney, L. N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Local Mechanics Concepts for Composite Material Systems (Reddy, J. N., Reifsnider K. L., eds.), Proc. IUTAM Symposium, Blacksburg, VA, October 28–31, pp. 251–282. Berlin: Springer 1991.

  46. Nairn J. A. (1997). On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26: 63–80

    Article  Google Scholar 

  47. Zhang J. and Herrmann K. P. (1999). Stiffness degradation induced by multilayer intralaminar cracking in composite laminates. Composite Part A. 30: 683–706

    Article  Google Scholar 

  48. Li C. and Chou T.-W. (2003). Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63: 1517–1524

    Article  Google Scholar 

  49. Li C. and Chou T.-W. (2003). A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40: 2487–2499

    Article  MATH  Google Scholar 

  50. Abate J. and Valko P. P. (2004). Multi-precision Laplace transform inversion. Int. J. Numer. Meth. Engng. 60: 979–993

    Article  MATH  Google Scholar 

  51. Brinson L. C. and Lin W. S. (1998). Comparison of micromechanics methods for effective properties of multiphase viscoelastic compounds. Compos. Struct. 41: 353–367

    Article  Google Scholar 

  52. Fisher F. T., Bradshaw R. D. and Brinson L. C. (2003). Fiber waviness in nanotube-reinforced polymer composites – I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63: 1689–1703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., He, C. A three-phase cylindrical shear-lag model for carbon nanotube composites. Acta Mech 196, 33–54 (2008). https://doi.org/10.1007/s00707-007-0489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0489-x

Keywords

Navigation