Skip to main content
Log in

Temperature effects on the electrical characteristics of \(\mathrm{Al}/\mathrm{PTh}-\mathrm{SiO}_{2}/\mathrm{p\hbox {-}Si}\) structure

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The temperature-dependent current–voltage (\(I\text {--}V\)) and capacitance–voltage (\(C\text {--}V\)) characteristics of the fabricated Al/p-Si Schottky diodes with the polythiopene–SiO\(_{2}\) nanocomposite (\(\hbox {PTh--SiO}_{2}\)) interlayer were investigated. The ideality factor of \(\hbox {Al}/\hbox {PTh--SiO}_{2}/{p}\text {-Si}\) Schottky diodes has decreased with increasing temperature and the barrier height has increased with increasing temperature. The change in the barrier height and ideality factor values with temperature was attributed to inhomogeneties of the zero-bias barrier height. Richardson plot has exhibited curved behaviour due to temperature dependence of barrier height. The activation energy and effective Richardson constant were calculated as 0.16 eV and \(1.79 \times 10^{-8} \hbox {A\,cm}^{-2} \,\hbox {K}^{-2}\) from linear part of Richardson plots, respectively. The barrier height values determined from capacitance–voltage–temperature (\(C\text {--}V\text {--}T\)) measurements decrease with increasing temperature on the contrary of barrier height values obtained from \(I\text {--}V\text {--}T\) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farag A A M, Gunduz B, Yakuphanoglu F and Farooq W A 2010 Synth. Met. 160 2559

    Article  Google Scholar 

  2. Ginev G, Riedl T, Parashkov R, Johannes H-H and Kowalsky W 2004 Appl. Surf. Sci. 234 22

    Article  Google Scholar 

  3. Gupta R K, Aydın M E and Yakuphanoglu F 2011 Synth. Met. 161 2355

    Article  Google Scholar 

  4. Kampen T U, Park S and Zahn D R T 2002 Appl. Surf. Sci. 190 461

    Article  Google Scholar 

  5. Soylu M and Yakuphanoglu F 2012 Superlattices Microstruct. 52 470

    Article  Google Scholar 

  6. Nastase F, Stamatin I, Nastase C, Mihaiescu D and Moldovan A 2006 Prog. Solid State Chem. 34 191

    Article  Google Scholar 

  7. Chen C H and Shih I 2006 J. Mater. Sci. Mater. Electron. 17 1047

    Article  Google Scholar 

  8. Özdemir A F, Aldemir D A, Kökce A and Altindal S 2009 Synth. Met. 159 1427

    Article  Google Scholar 

  9. Ates M, Karazehir T and Sarac A S 2012 Curr. Phys. Chem. 2 224

    Article  Google Scholar 

  10. Berggren M, Inganäs O, Gustafsson G, Rasmusson J, Andersson M R, Hjertberg T et al 1994 Nature 372 444

    Article  Google Scholar 

  11. Saxena V and Santhanam K S 2003 Curr. Appl. Phys. 3 227

    Article  Google Scholar 

  12. Kutsche C, Targove J and Haalandc P 1993 J. Appl. Phys. 73 2602

    Article  Google Scholar 

  13. Gök A, Koçak E D and Aydoğdu S 2005 J. Appl. Polym. Sci. 96 746

    Article  Google Scholar 

  14. Huang Z M, Zhang Y Z and Kotaki M 2003 Compos. Sci. Technol. 63 2223

    Article  Google Scholar 

  15. Jeon I Y and Baek J B 2010 Materials (Basel) 3 3654

    Article  Google Scholar 

  16. Aldemir D A, Esen M, Kökce A, Karataş S and Özdemir A F 2011 Thin Solid Films 519 6004

    Article  Google Scholar 

  17. Cova P, Singh A and Masut R A 1997 J. Appl. Phys. 82 5217

    Article  Google Scholar 

  18. Hübers H and Röser H 1998 J. Appl. Phys. 84 5326

    Article  Google Scholar 

  19. Huang S and Lu F 2006 Appl. Surf. Sci. 252 4027

    Article  Google Scholar 

  20. Aydin S B, Yildiz D E, Çavuş H K and Şahingöz R 2014 Bull. Mater. Sci. 37 1563

    Article  Google Scholar 

  21. Hudait M K, Venkateswarlu P and Krupanidhi S B 2001 Solid State Electron. 45 133

    Article  Google Scholar 

  22. Rhoderick E H and Williams R H 1988 Metal–semiconductor contacts (Oxford (England): Oxford University Press)

  23. Kim B H, Jung J H, Hong S H, Kim J W, Choi H J and Joo J 2001 Synth. Met. 121 1311

    Article  Google Scholar 

  24. Altındal Ş, Dökme İ, Bülbül M M, Yalçın N and Serin T 2006 Microelectron. Eng. 83 499

    Article  Google Scholar 

  25. Yüksel Ö F 2009 Phys. B Condens. Matter 404 1993

    Article  Google Scholar 

  26. Huang W C, Horng C T, Cheng J C and Chen C C 2011 Microelectron. Eng. 88 597

    Article  Google Scholar 

  27. Bludau W, Onton A and Heinke W 1974 J. Appl. Phys. 45 1846

    Article  Google Scholar 

  28. Tung R T 1992 Phys. Rev. B 45 13509

    Article  Google Scholar 

  29. Karataş Ş, Altındal Ş, Türüt A and Çakar M 2007 Phys. B Condens. Matter 392 43

    Article  Google Scholar 

  30. Yakuphanoglu F 2007 Phys. B Condens. Matter 389 306

    Article  Google Scholar 

  31. Tugluoglu N, Karadeniz S, Sahin M and Safak H 2004 Appl. Surf. Sci. 233 320

    Article  Google Scholar 

  32. Aydoğan Ş, Sağlam M and Türüt A 2008 Microelectron. Eng. 85 278

    Article  Google Scholar 

  33. Bhuiyan A S, Martinez A and Esteve D 1998 Thin Solid Films 161 93

    Article  Google Scholar 

  34. Missous M and Rhoderick E H 1991 J. Appl. Phys. 69 7142

    Article  Google Scholar 

  35. Srivastava A K, Arora B M and Guha S 1981 Solid State Electron. 24 185

    Article  Google Scholar 

  36. Sze S M and Ng K K 2007 Physics of semiconductor devices, 3rd edn. (USA: Wiley-Interscience)

    Google Scholar 

  37. Zeyrek S, Altındal Ş, Yüzer H and Bülbül M M 2006 Appl. Surf. Sci. 252 2999

    Article  Google Scholar 

  38. Hudait M K and Krupanidhi S B 2001 Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 87 141

    Article  Google Scholar 

  39. Khurelbaatar Z, Shim K, Cho J, Hong H, Reddy V R and Choi C 2015 Mater. Trans. 56 10

    Article  Google Scholar 

  40. Pattabi M, Krishnan S, Ganesh and Mathew X 2007 Sol. Energy 81 111

  41. Selçuk A, Ocak S B and Karadeniz S 2012 Am. J. Mater. Sci. 2 125

    Article  Google Scholar 

  42. Sullivan J P, Tung R T, Pinto M R and Graham W R 1991 J. Appl. Phys. 70 7403

    Article  Google Scholar 

  43. Werner J H and Güttler H H 1991 J. Appl. Phys. 69 1522

    Article  Google Scholar 

  44. Karataş Ş, Altındal Ş and Çakar M 2005 Phys. B Condens. Matter 357 386

    Article  Google Scholar 

  45. Janardhanam V, Kumar A A, Reddy V R and Reddy P N 2009 J. Alloys Compd. 485 467

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ayşegül Öksüz, E Derya Koçak and Sibel Aydoğdu, who synthesized the \(\hbox {polythiophene--SiO}_{2}\) nanocomposite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DurmuŞ Ali Aldemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldemir, D.A., Kökce, A. & Özdemir, A.F. Temperature effects on the electrical characteristics of \(\mathrm{Al}/\mathrm{PTh}-\mathrm{SiO}_{2}/\mathrm{p\hbox {-}Si}\) structure. Bull Mater Sci 40, 1435–1439 (2017). https://doi.org/10.1007/s12034-017-1509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1509-7

Keywords

Navigation