Skip to main content
Log in

Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Au/Ti/HfO2/n-GaAs MIS (metal/insulating layer/semiconductor) diodes were fabricated by atomic layer deposition technique and their electrical properties were investigated in detail by the help of current–voltage (I–V) and admittance measurements in the temperature range of 60–320 K. Together with the surface morphology analysis on the HfO2 thin-film layer, main electrical parameters such as series resistance (Rs), zero bias barrier height (ΦBo), ideality factor (n), impedance (Z) and phase angle were determined and effects of temperature on these parameters of the MIS diodes were discussed. The evaluation of I–V data exhibits a decrease in Rs and ΦBo, however an increase in n, with a decrease in temperature. Temperature-dependent conductance (G) and capacitance (C) characteristics of the MIS diode were investigated at 1000 kHz in the voltage interval in between − 3 and 2 V. G and C values were found in a direct relation with the change in temperature. On the other hand, Z values showed an inverse proportionality with temperature. The phase angle versus voltage plots were evaluated at different temperatures (60–320 K) at 1000 kHz and the obtained results indicated that the device behaves more capacitive in the voltage range of − 3 V and about 0.4 V for all temperature, and phase angle decreases with increasing temperature from 0.4 to 1.6 V. In addition, the interface state density (Dit), the effective oxide charge density (Qeff) and effective number of charges per unit area (Neff) of the fabricated diodes were investigated over temperature range 60–320 K in which these values were found in a decreasing trend with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Google Scholar 

  2. Y. Jiao, A. Heliman, Y. Fang, S. Gao, M. Kall, Sci. Rep. 5, 11374 (2015)

    CAS  Google Scholar 

  3. I.A. Digdaya, B.J. Trzesniewski, G.W.P. Adhyaksa, E.C. Garnett, W.A. Smith, J. Phys. Chem. C. 122, 5462 (2018)

    CAS  Google Scholar 

  4. M. Uma, N. Balaram, P.R.S. Redd, V. Janardhanam, V. R. Reddy, H-J. Yun, S.-N. Lee,C-J. Choi., J. Elect. Mater. 48(7), 4217 (2019).

  5. H.H. Gullu, D.E. Yildiz, J. Mater. Sci: Mater. Electron. 30, 19383 (2019)

    CAS  Google Scholar 

  6. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, Nature 399, 758 (1999)

    CAS  Google Scholar 

  7. A. Tataroglu, Microelect. Eng. 83, 2551 (2006)

    CAS  Google Scholar 

  8. A. Ashery, M.M.M. Elnasharty, Silicon 11, 1875 (2019)

    CAS  Google Scholar 

  9. S. Bengi, M.M. Bülbül, Curr. Appl. Phys. 13, 1819 (2013)

    Google Scholar 

  10. A. Karabulut, Bull. Mater. Sci. 42(5), 1 (2019)

    CAS  Google Scholar 

  11. J.H. Kim, V.A. Ignatova, P. Kucher et al., Curr. Appl. Phys. 9, 104 (2009)

    Google Scholar 

  12. J.H. Choi, Y. Mao, J.P. Chang, Mater. Sci. Eng. R 72, 97 (2011)

    Google Scholar 

  13. S. Rudenja, A. Minko, D.A. Buchanan, Appl. Surf. Sci. 257, 17 (2010)

    CAS  Google Scholar 

  14. J.B. Park, W.S. Lim, B.J. Park, I.H. Park, Y.W. Kim, G.Y. Yeom, J. Phys. D Appl. Phys. 42, 055202 (2009)

    Google Scholar 

  15. Yu Tao, C. Jin, X. Yang, Y. Dong, H. Zhang, L. Zhuge, Wu Xumei, Wu Zhaofeng, Appl. Surf. Sci. 258, 2953 (2012)

    Google Scholar 

  16. M.H. Cho, Y.S. Roh, C.N. Whang, K. Jeong, S.W. Nahm, D.H. Ko, J.H. Lee, N.I. Lee, K. Fujihara, Appl. Phys. Lett. 81, 472 (2002)

    CAS  Google Scholar 

  17. B.K. Park, J. Park, M. Cho, C.S. Hwang, K. Oh, Y. Han, D.Y. Yang, Appl. Phys. Lett. 80, 2368 (2002)

    CAS  Google Scholar 

  18. S. Sayan, S. Aravamudhan, B.W. Busch, W.H. Schulte, F. Cosandey, G.D. Wilk, T. Gustafsson, E. Garfunkel, J. Vac. Sci. Technol. A 20, 507 (2002)

    CAS  Google Scholar 

  19. Y. Wang, J. Zhang, G. Liang, Y. Shi, Y. Zhang, Z.R. Kudrynski, Z.D. Kovalyuk, A. Patane, Q. Xin, A. Song, Appl. Phys. Lett. 115, 033502 (2019)

    Google Scholar 

  20. B.H. Lee, L. Kang, R. Nieh, W.J. Qi, J.C. Lee, Appl. Phys. Lett. 76, 1926 (2000)

    CAS  Google Scholar 

  21. L. Kang, B.H. Lee, W.J. Qi, Y. Jeon, R. Nieh, S. Gopalan et al., IEEE Electron Device Lett. 21, 181 (2000)

    CAS  Google Scholar 

  22. S.Y. Lee, S. Chang, J.S. Lee, Thin Solid Films 518, 3030 (2010)

    CAS  Google Scholar 

  23. G. He, L.Q. Zhu, M. Liu, Q. Fang, L.D. Zhang, Appl. Surf. Sci. 253, 3413 (2007)

    CAS  Google Scholar 

  24. K.P. Bastos, J. Morais, L. Miotti, R.P. Pezzi, G. Soares, I.J.R. Baumvol, R.I. Hegde, H.H. Tseng, P.J. Tobin, Appl. Phys. Lett. 81, 1669 (2002)

    CAS  Google Scholar 

  25. S. Sayan, E. Garfunkel, S. Suzer, Appl. Phys. Lett. 80, 2135 (2002)

    CAS  Google Scholar 

  26. S. Altındal, A. Tataroglu, I. Dokme, Sol. Energy Mater. Sol. Cells 85, 345 (2005)

    Google Scholar 

  27. P. Chattopadhyay, B. Raychaudhuri, Solid State Electron. 35, 605 (1993)

    Google Scholar 

  28. J. Shewchun, M.A. Geen, F.D. King, Solid State Electron. 17, 563 (1974)

    CAS  Google Scholar 

  29. F. Hirose, Y. Kinoshita, K. Kanomata, K. Momiyama, S. Kubota, K. Hirahara, Y. Kimura, M. Niwano, Appl. Surf. Sci. 258, 7726 (2012)

    CAS  Google Scholar 

  30. K.Y. Lee, W.C. Lee, M.L. Huang, C.H. Chang, Y.J. Lee, Y.K. Chiu, T.B. Wu, M. Hong, R. Kwo, J. Cryst. Growth 301–302, 378 (2007)

    Google Scholar 

  31. L. Khomenkova, X. Portier, J. Cardin, F. Gourbilleau, Nanotechnology 21, 285707 (2010)

    CAS  Google Scholar 

  32. A. A. Sokolov, E. O. Filatova, V.V. Afanas’ev, E.Y. Taracheva, M.M. Brzhezinskaya, Ovchinnikov, J. Phys. D-Appl. Phys. 42, 035308 (2009).

  33. M.S.P. Reddy, P. Puneetha, V.R. Reddy, J.H. Lee, S.H. Jeong, C. Park. J. Electron. Mater. 45, 5655 (2016)

    CAS  Google Scholar 

  34. D.A. Aldemir, A. Kökce, A. F. Özdemir. Bull. Mater. Sci. 40, 1435 (2017)

    CAS  Google Scholar 

  35. K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskela. Thin Solid Films 416, 72 (2002)

    CAS  Google Scholar 

  36. N. Biyikli, A. Karabulut, H. Efeoglu, B. Guzeldir, A. Turut, Phys. Scr. 89, 095804 (2014)

    Google Scholar 

  37. F. Ozdemir, A. Kokce, A. Türüt, Appl. Surf. Sci. 191, 188 (2002)

    CAS  Google Scholar 

  38. M. Biber, C. Temirci, A. Türüt, J. Vac. Technol. B 20(1), 10 (2002)

    CAS  Google Scholar 

  39. V. Budhraja, D. Misra, ECS Trans. 16(5), 455 (2008)

    CAS  Google Scholar 

  40. O. Kahveci, A. Akkaya, E. Ayyildiz, A. Turut, Surf. Rev. Lett. 24, 1750047 (2017)

    CAS  Google Scholar 

  41. W.B. Bouiadjra, A. Saidane, A. Mostefa, M. Henini, M. Shaf 71, 225 (2014)

    Google Scholar 

  42. Y. Wang, Y. Wang, L. Li, Y. Zhao, G. Feng, X. Wang “Research on rapid thermal annealing of ohmic contact to GaAs” International Conference on Optoelectronics and Microelectronics (ICOM), 23–25 Aug, 2012.

  43. S.Y. Moon, J.H. Son, K.J. Choi, J.L. Lee, Appl. Phys. Lett. 99, 202106 (2011)

    Google Scholar 

  44. D.W. Davies, D.V. Morgan, H. Thomas, Semicond. Sci. Technol. 14, 615 (1999)

    CAS  Google Scholar 

  45. A. Karabulut, H. Efeoglu, A. Turut, J. Semicond. 38(5), 054003 (2017)

    Google Scholar 

  46. G.Y. Robinson, Physics and Chemistry of III–V Compound Semiconductor Interfaces, ed. by C. W. Wilmsen, (Plenum Press, New York, 1995).

  47. K. Kolanek, M. Tallarida, M. Michling, D. Schmeisser, J. Vac. Sci. Technol. A 30(1), 01A143 (2011)

    Google Scholar 

  48. S.-J. Jeong, Y. Gu, J. Heo, J. Yang, C.S. Lee, M.H. Lee, Y. Lee, H. Kim, S. Park, Hwang Sci. Rep. 6, 20907 (2016)

    CAS  Google Scholar 

  49. A. Christou, W.M. Web “Reliability of Compound Analogue Semiconductor Integrated Circuits” RIAC, University of Maryland, New York

  50. W. Gao, P.R. Berger, R.G. Hunsperger, G. Zydzik, W.W. Rhodes, H.M. O’Bryan, D. Sivco, A.Y. Cho, Appl. Phys. Lett. 66, 3471 (1995)

    CAS  Google Scholar 

  51. I.B. Chistokhin, M.S. Aksenov, N.A. Valisheva, D.V. Cmitriev, A.P. Konchavtsev, A.K. Gutakovskii, I.P. Prosvirin, K.S. Zhuravlev, Mater. Sci. Semicond. Process. 74, 193 (2018)

    CAS  Google Scholar 

  52. V.R. Reddy, Y.M. Reddy, R. Padmasuvarna, T.L. Narasappa, Procedia Mater. Sci. 10, 666 (2015)

    CAS  Google Scholar 

  53. H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yildirim, J. Alloy Compd. 827, 154279 (2020)

    CAS  Google Scholar 

  54. V. Janardhanam, H.K. Lee, K.H. Shim, H.B. Hong, S.H. Lee, K.S. Ahn, C.J. Choi, J. Alloys Compd. 504, 146 (2010)

    CAS  Google Scholar 

  55. S. Altındal, H. Kanbur, D.E. Yıldız, M. Parlak. Appl. Surf. Sci. 253, 5056 (2007)

    Google Scholar 

  56. A. Bengi, S.J. Jang, C.I. Yeo, T. Mammadov, S. Ozcelik, Y.T. Lee, Solid State Electron. 61, 29 (2011)

    CAS  Google Scholar 

  57. I.S. Yahia, M. Fadel, G.B. Sakr, F. Yakuphanoglu, S.S. Shenouda, W.A. Farooq, J. Alloy. Compd. 509, 4414 (2011)

    CAS  Google Scholar 

  58. D.E. Yildiz, H.H. Gullu, A. Sarilmaz, F. Ozel, A. Kocyigit, M. Yildirim, J. Mater. Sci 31, 935 (2020)

    CAS  Google Scholar 

  59. C.R. Crowell, Solid State Electron. 8, 395 (1965)

    Google Scholar 

  60. P. Chattopadhyay, J. Phys. D 29, 823 (1996)

    CAS  Google Scholar 

  61. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    CAS  Google Scholar 

  62. H. Saghrouni, S. Jomni, W. Belgacem, N. Hamdaoui, L. Beji, Phys. B 444, 58 (2014)

    CAS  Google Scholar 

  63. M. Fanciulli, G. Scarel, Rare Earth Oxide Thin Film: Growth, Characterization, and Applications (Springer, Berlin, 2007)

    Google Scholar 

  64. M. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci. 19, 915 (2008)

    CAS  Google Scholar 

  65. H. Kim, Y. Cho, D.-W. Kim, D.H. Kim, Y. Kim, B.J. Choi, J. Korean Phys. Soc. 73(3), 349 (2018)

    CAS  Google Scholar 

  66. M. Soylu, B. Abay, Microelectron. Eng. 86, 88 (2009)

    CAS  Google Scholar 

  67. D.A. Aldemir, A. Kökce, A.F. Özdemir, Sakarya Univ. Inst. Sci. J. 21(6), 1286 (2017)

    Google Scholar 

  68. E.H. Roderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  69. Ş. Altındal, S. Karadeniz, N. Tugluoglu, A. Tataroglu, Solid-State Electron. 47, 1847 (2003)

    Google Scholar 

  70. A. Sing, Solid-State Electron. 28, 223 (1985)

    Google Scholar 

  71. B. Akkal, Z. Benamara, B. Gruzza, L. Bideux, Vacuum 57, 219 (2000)

    CAS  Google Scholar 

  72. P. Ozdag, Capacitance-Voltage Spectroscopy in Metal-Tantalum Pentoxide (Ta2O5)-Silicon MOS Capacitors (Izmir Institute of Technology, Izmir, 2005)

    Google Scholar 

  73. F. Yigiterol, H.H. Gullu, O. Bayrakli, D.E. Yıldız, J. Electron. Mater. 47(5), 2979 (2018)

    CAS  Google Scholar 

  74. F.M. Coșkun, O. Polat, M. Coșkun, A. Turut, M. Caglar, Z. Durmus, H. Efeoğlu, J. Appl. Phys. 125, 214104 (2019)

    Google Scholar 

  75. S. Mahato, RSC Adv. 7, 47125 (2017)

    CAS  Google Scholar 

  76. B. Sahin, H. Cetin, E. Ayyıldız, Solid State Commun. 135, 490 (2005)

    CAS  Google Scholar 

  77. P. Chattopadhyay, S. Sanyal, Appl. Surf. Sci. 89, 205 (1995)

    CAS  Google Scholar 

  78. A. Tataroglu, Ş. Altındal, Y. Azizian-Kalandaagh, Phys. B: Cond. Matter. 582, 411996 (2020)

    Google Scholar 

  79. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  80. D.E. Yıldız, J. Mater. Sci. 29(20), 17802 (2018)

    Google Scholar 

  81. C.H. Kim, O. Yaghmazadeh, D. Tondelier, Y.B. Jeong, G. Yvan Bonnassieux, Horowitz. J. Appl. Phys. 109, 083710 (2011)

    Google Scholar 

  82. H.H. Gullu, O. Bayrakli Surucu, M. Terlemezoglu, D.E. Yildiz, M. Parlak, J. Mater. Sci. 30, 9814 (2019)

    CAS  Google Scholar 

  83. H. Dogan, N. Yıldırım, I. Orak, S. Elagöz, A. Turut, Phys. B 457, 48 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Yıldız.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turut, A., Yıldız, D.E., Karabulut, A. et al. Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range. J Mater Sci: Mater Electron 31, 7839–7849 (2020). https://doi.org/10.1007/s10854-020-03322-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03322-w

Navigation