Skip to main content
Log in

Agroinfiltration-based transient genome editing for targeting phytoene desaturase gene in kinnow mandarin (C. reticulata Blanco)

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Citrus reticulata Blanco also known as kinnow mandarin is a widely grown horticultural crop in Punjab. CRISPR/Cas9 technology is being widely used for generation of varieties with increased resilience towards abiotic and biotic stresses as well as improved horticultural traits. Xanthomonas citri subsp. citri (Xcc)-mediated Agroinfiltration offers a fast and transgene-free method for the delivery of CRISPR/Cas9 constructs for systemic introduction into plants for functional genomics and expression studies. The technology is currently unexplored in kinnow mandarin. This study is aimed at establishing an efficient method of Cas9 delivery for transient knockout of PDS (phytoene desaturase) gene in kinnow mandarin. The construct pKO-119-PDS N-Cas9/sgRNA:PDS1 carrying sgRNA and Cas9 enzyme was delivered into the dorsal surface of young leaves of kinnow mandarin. The leaves showed albino patches at the point of injection within 60 h. Two surfactants (Triton-X and Silwet) were used to ease the Agroinfiltration process which resulted in variation in the expression of vector. The Sanger’s analysis of the treated plants showed a substitution within the sgRNA region which resulted in change in amino acid from proline to serine. The protocol provides a feasible and an efficient method for genome editing in C. reticulata which could be helpful in future studies aimed at genome editing as well as genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available on request.

References

  1. Ghosh, D., Venkataramani, P., Nandi, S., & Bhattacharjee, S. (2019). CRISPR-Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell International, 19, 12. https://doi.org/10.1186/s12935-019-0726-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5, 1. https://doi.org/10.1038/s41392-019-0089-y

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hoshijima, K., Jurynec, M. J., & Grunwald, D. J. (2016). Precise genome editing by homologous recombination. Methods in Cell Biology, 135, 121–147. https://doi.org/10.1016/bs.mcb.2016.04.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bernardi, B., & Wendland, J. (2020). Homologous recombination: A GRAS yeast genome editing tool. Fermentation, 6(2), 57. https://doi.org/10.3390/fermentation6020057

    Article  CAS  Google Scholar 

  5. Chen, C., Fenk, L. A., & De Bono, M. (2013). Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acid Research, 41(20), e193. https://doi.org/10.1093/nar/gkt805

    Article  CAS  Google Scholar 

  6. Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188(4), 773–782. https://doi.org/10.1534/genetics.111.131433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Harmatz, P., Prada, C. E., Burton, B. K., Lau, H., Kessler, C. M., Cao, L., et al. (2022). First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysachharides I/II and haemophilia B. Molecular Therapy, 30(12), 3587–3600. https://doi.org/10.1016/j.ymthe.2022.10.010

    Article  PubMed  CAS  Google Scholar 

  8. Wood, A. J., Lo, T. W., Zeitler, B., Pickle, C. S., Ralston, E. J., Lee, A. H., et al. (2011). Targeted genome editing across species using ZFNs and TALENs. Science, 333(6040), 307. https://doi.org/10.1126/science.1207773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cerven, J., Vrbovsky, V., Horacek, J., Bartas, M., Endlova, L., Pecinka, P., et al. (2013). New low morphine opium poppy genotype obtained by TILLING approach. Plant, 12(5), 1077. https://doi.org/10.3390/plants12051077

    Article  CAS  Google Scholar 

  10. Palan, B., Anjanabha, B., & Bharat, C. (2021). TILLING in the era of precise genome editing. Indian Journal of Biotechnology, 20(1), 9–16.

    CAS  Google Scholar 

  11. Acevedo-Garcia, J., Spencer, D., Thieron, H., Reinstader, A., Hammond-Kosack, K., Phillips, A. L., et al. (2016). mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnology Journal. https://doi.org/10.1111/pbi.12631

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luo, M., Li, H., Charkraborty, S., Morbitzer, R., Rinaldo, A., Upadhyaya, N., et al. (2019). Efficient TALEN-mediated gene editing in wheat. Plant Biotechnology Journal, 17(11), 2026–2028. https://doi.org/10.1111/pbi.13169

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kazama, T., Okuno, M., Watari, Y., Yanase, S., Koizuka, C., Tsuruta, Y., et al. (2019). Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nature Plants, 5, 722–730. https://doi.org/10.1038/s41477-019-0459-z

    Article  PubMed  CAS  Google Scholar 

  14. Boubakri, H. (2023). Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Gene, 866, 147334. https://doi.org/10.1016/j.gene.2023.147334

    Article  PubMed  CAS  Google Scholar 

  15. Wada, N., Ueta, R., Osakabe, Y., & Osakabe, K. (2020). Precision genome editing in plants: State-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 20, 234. https://doi.org/10.1186/s12870-020-02385-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Samanta, M. K., Dey, A., & Gayen, S. (2016). CRISPR/Cas9: An advanced tool for editing plant genomes. Transgenic Research, 25, 561–573. https://doi.org/10.1007/s11248-016-9953-5

    Article  PubMed  CAS  Google Scholar 

  17. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., & Nekrasov, V. (2015). Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32, 76–84. https://doi.org/10.1016/j.copbio.2014.11.007

    Article  PubMed  CAS  Google Scholar 

  18. Danilo, B., Montes, E., Archambeau, H., Lode, M., Rousseau-Gueutin, M., Chevre, A. M., et al. (2021). I-SceI and customized meganucleases-mediated genome editing in tomato and oilseed rape. Transgenic Research, 31, 87–105. https://doi.org/10.1007/s11248-021-00287-2

    Article  PubMed  CAS  Google Scholar 

  19. Silva, G., Poirot, L., Galetto, R., Smith, J., Montoya, G., Duchateau, P., et al. (2011). Meganucleases and other tools for targeted genome engineering: Perspective and challenges for gene therapy. Current Gene Therapy, 11(1), 11–27. https://doi.org/10.2174/156652311794520111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21(2), 121–131. https://doi.org/10.1038/nm.3793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Manchanda, P., & Suneja, Y. (2018). Genome editing for crop improvement: status and prospects. In S. S. Gosal & S. H. Wani (Eds.), Biotechnologies for crop improvement (Vol. 3, pp. 75–104). Berlin: Springer.

    Chapter  Google Scholar 

  22. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23, 1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686–688. https://doi.org/10.1038/nbt.2650

    Article  PubMed  CAS  Google Scholar 

  24. Xie, K., & Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 6(6), 1975–1983. https://doi.org/10.1093/mp/sst119

    Article  PubMed  CAS  Google Scholar 

  25. Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamania using guide RNA and Cas9. Nature Biotechnology, 31, 688–691. https://doi.org/10.1038/nbt.2654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamania using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 691–693. https://doi.org/10.1038/nbt.2655

    Article  PubMed  CAS  Google Scholar 

  27. Vaia, G., Pavese, V., Moglia, A., Cristofori, V., & Silvestri, C. (2022). Knockout of phytoene desaturase gene using CRISPR/Cas9 in highbush blueberry. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2022.1074541

    Article  PubMed  PubMed Central  Google Scholar 

  28. Donini, M., & Marusic, C. (2019). Current state-of-the-art in plant-based antibody production systems. Biotechnology Letters, 41, 335–346. https://doi.org/10.1007/s10529-019-02651-z

    Article  PubMed  CAS  Google Scholar 

  29. Kaur, M., Manchanda, P., Kalia, A., Ahmed, F. K., Nepovimona, E., Kuca, K., et al. (2021). Agroinfiltration mediated scalable transient gene expression in genome edited crop plants. International Journal of Molecular Sciences, 22(19), 10882. https://doi.org/10.3390/ijms221910882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jia, H., Orbovic, V., Jones, J. B., & Wang, N. (2016). Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnology Journal, 14(5), 1291–1301. https://doi.org/10.1111/pbi.12495

    Article  PubMed  CAS  Google Scholar 

  31. Jia, H., Zhang, Y., Orbovic, V., Xu, J., White, F. F., Jones, J. B., et al. (2017). Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15(7), 817–823. https://doi.org/10.1111/pbi.12677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jia, H., Xu, J., Orbovic, V., Zhang, Y., & Wang, N. (2017). Editing citrus genome via SaCas9/sgRNA system. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.02135

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jia, H., Wang, Y., Su, H., Huang, X., & Wang, N. (2022). LbCas12-D156R efficiently edits LOB1 effector binding elements to generate canker-resistant citrus plants. Cells, 11(3), 315. https://doi.org/10.3390/cells11030315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sendin, L. N., Filippone, M. P., Orce, I. G., Rigano, L., Enrique, R., & Pena, L. (2012). Transient expression of pepper Bs2 gene in Citrus limon as an approach to evaluate its utility for the management of citrus canker disease. Plant Pathology, 61(4), 648–657. https://doi.org/10.1111/j.1365-3059.2011.02558.x

    Article  CAS  Google Scholar 

  35. Huang, X., Wang, Y., & Wang, N. (2022). Highly efficient generation of canker-resistant sweet orange enabled by an improved CRISPR/Cas9 System. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.769907

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jia, H., & Wang, N. (2014). Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA. PLoS ONE, 9(4), e93806. https://doi.org/10.1371/journal.pone.0093806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mahawar, M. K., Jalgaonkar, K., Bibwe, B., Bhushan, B., Meena, V. S., & Sonkar, R. K. (2020). Post-harvest processing and valorization of Kinnow mandarin (Citrus reticulata L.): a review. Journal of Food Science and Technology., 57(3), 799–815. https://doi.org/10.1007/s13197-019-04083-z

    Article  PubMed  CAS  Google Scholar 

  38. Manchanda, P., Kaur, H., Mankoo, R. K., Kaur, A., Kaur, J., Kaur, S., & Sidhu, G. S. (2022). Optimization of extraction of bioactive phenolics and their antioxidant potential from callus and leaf extracts of Citrus sinensis (L.) Osbeck, C. reticulata Blanco and C. maxima (Burm.) Merr. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-022-01695-6

    Article  Google Scholar 

  39. Manchanda, P., Kaur, H., Mankoo, R. K., Kaur, J., Kaur, M., & Sidhu, G. S. (2023). Effect of solvent ratio, temperature and time on extraction of bioactive compounds and their antioxidant potential from callus, leaf and peel extracts of Citrus pseudolimon Taraka. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-023-02111-3

    Article  Google Scholar 

  40. Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulata L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25(3), 488–500. https://doi.org/10.1016/j.jfda.2016.07.010

    Article  PubMed  CAS  Google Scholar 

  41. Magda, R., Awad, A., & Selim, K. (2008). Evaluation of mandarin and navel orange peels as natural sources of antioxidant in biscuits. Alexandria Journal of Food Science and Technology, 5(2), 75–82. https://doi.org/10.12816/AJFS.2008.19647

    Article  Google Scholar 

  42. Navarro, C., Abelenda, J., Cruz-Oro, E., Cueller, C., Tamaki, S., Silva, J., et al. (2011). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 478, 166–176. https://doi.org/10.1038/nature10431

    Article  CAS  Google Scholar 

  43. Calderon-Perez, B., Ramrez-Pool, J. A., Nunez-Munoz, L. A., Vargas-Harnandez, B. Y., Camacho-Romero, A., Lara-Villamar, M., et al. (2022). Engineering macromolecular trafficking into the citrus vasculature. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2022.818046

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yuan, W. (1990). Culture medium for Xanthomonas campestris pv. oryzae. Journal of Applied Bacteriology, 69, 798–805.

    Article  CAS  Google Scholar 

  46. Doyle, J. (1991). DNA protocols for plants in Molecular Techniques. Berlin: Springer.

    Google Scholar 

  47. Lei, Y., Lu, L., Liu, H. Y., Li, S., Xing, F., & Chen, L. L. (2014). CRISPR-P A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 7(9), 1494–1496. https://doi.org/10.1093/mp/ssu044

    Article  PubMed  CAS  Google Scholar 

  48. Cohen, S. N., Chang, A. C., & Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proceedings of the National Academy of Sciences, 69(8), 2110–2114. https://doi.org/10.1073/pnas.69.8.2110

    Article  CAS  Google Scholar 

  49. Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M., & Schell, J. (1978). Transfection and transformation of Agrobacterium tumefaciens. Molecular and General Genetics, 163(2), 181–187. https://doi.org/10.1007/bf00267408

    Article  PubMed  CAS  Google Scholar 

  50. Koschmieder, J., Fehling-Kaschek, M., Schaub, P., Ghisla, S., Brausemann, A., Timmer, J., & Beyer, P. (2017). Plant-type phytoene desaturase: Functional evaluation of structural implications. PLoS ONE, 12(11), e0187628. https://doi.org/10.1371/journal.pone.0187628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hooghvorst, I., Lopez-Cristoffiani, C., & Nogues, S. (2019). Efficient knockout of phytoene destaurase gene using CRISPR/Cas9 in melon. Science and Reports, 9, 17077. https://doi.org/10.1038/s41598-019-53710-4

    Article  CAS  Google Scholar 

  52. Odipio, J., Alicai, T., Ingelbredcht, I., Nusinow, D. A., Bart, R., & Taylor, N. J. (2017). Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.01780

    Article  PubMed  PubMed Central  Google Scholar 

  53. Komatsu, H., Abdellatif, I. M. Y., Yuan, S., Ono, M., Nonaka, S., Eruza, H., et al. (2020). Genome editing in PDS genes of tomatoes by non-selection method and of Nicotiana benthamiana by one single guide RNA to edit two orthologs. Plant Biotechnol., 37(2), 213–221. https://doi.org/10.5511/plantbiotechnology.20.0527b

    Article  Google Scholar 

  54. Nezhdanona, A. V., Slugina, M. A., Kulakova, A. V., Kamionskaya, A. M., Kochieva, E. Z., & Shchennikova, A. V. (2023). Effect of mosaic knockout of phytoene desturase gene NtPDS on biosynthesis of carotenoids in Nicotiana tabacum L. Russian Journal of Plant Physiology, 70, 116. https://doi.org/10.1134/S1021443723601271

    Article  Google Scholar 

  55. Ntui, V. O., Tripathi, J. N., & Tripathi, L. (2020). Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa app.). Current Plant Biology, 21, 100128. https://doi.org/10.1016/j.cpb.2019.100128

    Article  Google Scholar 

  56. Siddappa, S., Sharma, N., Salaria, N., Thakur, K., Pathania, S., Singh, B., et al. (2023). CRISPR/Cas9-mediated editing of phytoene desturase (PDS) gene in an important staple crop, potato. Biotechnology, 13, 129. https://doi.org/10.1007/s13205-023-03543-w

    Article  Google Scholar 

  57. Wan, L., Wang, Z., Zhang, X., Zeng, H., Ren, J., Zhang, N., et al. (2023). Optimized Agrobacterium-mediated transformation and application of developmental regulators improve regeneration efficiency in melons. Genes, 14(7), 1432. https://doi.org/10.3390/genes14071432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jalan, N., Aritua, V., Kumar, D., Yu, F., Jones, J. B., Graham, J. H., et al. (2011). Comparative genomic analysis of Xanthomonas axonopodis cv. Citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. Journal of Bacteriology, 193, 6342–6357. https://doi.org/10.1128/jb.05777-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Scott, S. E., Eric, M., Marc, M., & Patricia, Z. (1985). Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318, 624–629. https://doi.org/10.1038/318624a0

    Article  Google Scholar 

  60. Cangelosi, G. A., Ankenbauer, R. G., & Nester, E. W. (1990). Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proceedings of the National Academy of Sciences, 87, 6708–6712. https://doi.org/10.1073/pnas.87.17.6708

    Article  CAS  Google Scholar 

  61. Zhang, J., Boone, L., Kocz, R., Zhang, C., Binns, A. N., & Lynn, D. G. (2000). At the maize/Agrobacterium interface: Natural factors limiting host transformation. Chemistry & Biology, 7, 611–621.

    Article  CAS  Google Scholar 

  62. Lu, Y., & Zhu, J. K. (2016). Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Molecular Plant. https://doi.org/10.1016/j.molp.2016.11.013

    Article  PubMed  Google Scholar 

  63. Sony, S. K., Kaul, T., Motelb, K. F. A., Thangaraj, A., Bharti, J., Kaul, R., et al. (2023). CRISPR/Cas9-mediated homology donor repair base editing confers glyphosate resistance to rice (Oryza sativa L.). Frontiers in Plant Science. https://doi.org/10.3389/fpls.2023.1122926

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., et al. (2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 9, 628–631. https://doi.org/10.1016/j.molp.2016.01.001

    Article  PubMed  CAS  Google Scholar 

  65. Chen, X., Lu, X., Shu, N., Wang, S., Wang, J., Wang, D., et al. (2017). Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/CAs9 system. Science and Reports, 7, 44304. https://doi.org/10.1038/srep44304

    Article  CAS  Google Scholar 

  66. Cai, Y., Chen, L., Zhang, Y., Yuan, S., Su, Q., Sun, S., et al. (2020). Target base pair editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnology Journal, 18, 1996–1998. https://doi.org/10.1111/pbi.13386

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao, H., Tan, Z., Wen, X., & Wang, Y. (2017). An improved syringe agroinfitration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbic acid and Tween-20. Plants, 6(1), 9. https://doi.org/10.3390/plants6010009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li, X., Ahlman, A., Yan, X., Lindgren, H., & Zhu, L. (2010). Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell Tissue Organ Culture., 100, 149–156. https://doi.org/10.1007/s11240-009-9630-y

    Article  CAS  Google Scholar 

  69. Chevreau, E., Dousset, N., Joffrion, C., Richer, A., Charrier, A., & Vergne, E. (2019). Agroinfiltration is a key factor to improve the efficiency of apple and pear transformation. Scientia Horticulturae, 251, 150–154. https://doi.org/10.1016/j.scienta.2019.03.003

    Article  Google Scholar 

  70. Zhang, Y., Chen, M., Siemiatkowska, B., Toleco, M. R., Jing, Y., Strotmann, V., et al. (2020). A highly efficient Agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species. Plant Communications, 1, 100028. https://doi.org/10.1016/j.xplc.2020.100028

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Prashant Mohanpuria, School of Agricultural Biotechnology, Punjab Agricultural University, for providing pKO-119 plasmid procured from Tokushima University, Japan.

Funding

The work is supported by the Department of Biotechnology under the Centre of Excellence Project entitled, ‘Development and Integration of Advanced Genomic Technologies for Targeted Breeding’ CSS-27 (PC-6372).

Author information

Authors and Affiliations

Authors

Contributions

PM designed the experiment, arranged the plant material and laboratory facilities, guided FK in conducting the research work and wrote the manuscript. HK conducted data analysis and wrote the manuscript. GSS provided kinnow plants for carrying out Agroinfiltration experiments. MSH provided the Xcc inoculum for carrying out the experiment. PC edited the manuscript. NSB was the mentor of PM and provided the idea for transient genetic transformation in kinnow. All authors reviewed the manuscript.

Corresponding author

Correspondence to Pooja Manchanda.

Ethics declarations

Conflict of interest

The authors report there are no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 741 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manchanda, P., Kaur, H., Khan, F. et al. Agroinfiltration-based transient genome editing for targeting phytoene desaturase gene in kinnow mandarin (C. reticulata Blanco). Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00980-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00980-z

Keywords

Navigation