Skip to main content

Advertisement

Log in

Current state-of-the-art in plant-based antibody production systems

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Monoclonal antibodies represent the major class of biopharmaceutical products (for therapeutics and diagnostics) with an increasing demand that reaches several tons per year worldwide. Traditional large-scale manufacturing processes are based on stirred tank bioreactors for the growth of Chinese Hamster Ovary cells (CHO) which requires high initial investments and production costs. Therefore, there is an urgent need for alternative production platforms that can at least act as a complement to the over-exploited mammalian fermentation systems. In this perspective, the use of plants for the large-scale production of biopharmaceuticals (‘Molecular farming’) represents an interesting and mature technology that has already proved its benefits in terms of safety, scalability, rapidity and reduced manufacturing costs. Here we discuss the recent advances in the production of monoclonal antibodies (mAbs) in plant-based platforms such as transgenic plants, tissue and cell cultures and transient expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  CAS  PubMed  Google Scholar 

  • Bosch D, Castilho A, Loos A, Schots A, Steinkellner H (2013) N-glycosylation of plant-produced recombinant proteins. Curr Pharm Des 19:5503–5512

    Article  CAS  PubMed  Google Scholar 

  • Buyel JF, Twyman RM, Fischer R (2017) Very-large-scale production of antibodies in plants: the biologization of manufacturing. Biotechnol Adv 35:458–465

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Lai H (2015) Gene delivery into plant cells for recombinant protein production. Biomed Res Int 2015:932161

    PubMed  PubMed Central  Google Scholar 

  • Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Circelli P, Donini M, Villani ME, Benvenuto E, Marusic C (2010) Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants. Bioeng Bugs 1:221–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR et al (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563

    Article  CAS  PubMed  Google Scholar 

  • Decker EL, Parsons J, Reski R (2014) Glyco-engineering for biopharmaceutical production in moss bioreactors. Front Plant Sci 5:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae-from tools to applications. Front Plant Sci 7:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake PMW, Szeto TH, Paul MJ, Teh AY-H, Ma JK-C (2017) Recombinant biologic products versus nutraceuticals from plants - a regulatory choice? Br J Clin Pharmacol 83:82–87

    Article  PubMed  Google Scholar 

  • Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. mAbs 7:9–14

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Vasilev N, Twyman RM, Schillberg S (2015) High-value products from plants: the challenges of process optimization. Curr Opin Biotechnol 32:156–162

    Article  CAS  PubMed  Google Scholar 

  • Gavilondo J V, Larrick JW (2000) Antibody engineering at the millennium. BioTechniques 29: 128–32, 134–6, 138 passim

  • Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706

    Article  CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    Article  CAS  PubMed  Google Scholar 

  • Häkkinen ST, Raven N, Henquet M, Laukkanen M-L et al (2014) Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng 111:336–346

    Article  CAS  PubMed  Google Scholar 

  • Hanania U, Ariel T, Tekoah Y, Fux L et al (2017) Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins. Plant Biotechnol J 15:1120–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel F, Maier UG (2012) An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb Cell Factories 11:126

    Article  CAS  Google Scholar 

  • Hendin HE, Pillet S, Lara AN, Wu C-Y, Charland N, Landry N, Ward BJ (2017) Plant-made virus-like particle vaccines bearing the hemagglutinin of either seasonal (H1) or avian (H5) influenza have distinct patterns of interaction with human immune cells in vitro. Vaccine 35:2592–2599

    Article  CAS  PubMed  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  CAS  PubMed  Google Scholar 

  • Holtz BR, Berquist BR, Bennett LD, Kommineni VJM, Munigunti RK, White EL, Wilkerson DC, Wong K-YI, Ly LH, Marcel S (2015) Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnol J 13:1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Jansing J, Sack M, Augustine SM, Fischer R, Bortesi L (2018) CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Plant Biotechnol J. https://doi.org/10.1111/pbi.12981

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin C, Altmann F, Strasser R, Mach L, Schähs M, Kunert R, Rademacher T, Glössl J, Steinkellner H (2008) A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology 18:235–241

    Article  CAS  PubMed  Google Scholar 

  • Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. mAbs 1:443–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Kircheis R, Halanek N, Koller I, Jost W, Schuster M, Gorr G, Hajszan K, Nechansky A (2012) Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314. mAbs 4:532–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Kizhner T, Azulay Y, Hainrichson M, Tekoah Y, Arvatz G, Shulman A, Ruderfer I, Aviezer D, Shaaltiel Y (2015) Characterization of a chemically modified plant cell culture expressed human α-Galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metabol 114:259–267

    Article  CAS  Google Scholar 

  • Klimyuk V, Pogue G, Herz S, Butler J, Haydon H (2014) Production of recombinant antigens and antibodies in nicotiana benthamiana using ‘magnifection’ technology: GMP-compliant facilities for small- and large-scale manufacturing. Curr Top Microbiol Immunol 375:127–154

    CAS  PubMed  Google Scholar 

  • Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9:859–876

    Article  CAS  PubMed  Google Scholar 

  • Kopertekh L, Schiemann J (2017) Transient production of recombinant pharmaceutical proteins in plants: evolution and perspectives. Curr Med Chem. https://doi.org/10.2174/0929867324666170718114724

    Article  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  CAS  PubMed  Google Scholar 

  • Lim JAC, Patkar A, McDonagh G, Sinclair A, Lucy P (2010) Modeling bioprocess cost: process economic benefits of expression technology based on Pseudomonas fluorescens. BioProcess Int 8:62–70

    Google Scholar 

  • Lomonossoff GP, D’Aoust M-A (2016) Plant-produced biopharmaceuticals: a case of technical developments driving clinical deployment. Science (New York, N.Y.) 353:1237–1240

    Article  CAS  Google Scholar 

  • Lonoce C, Salem R, Marusic C, Jutras PV, Scaloni A, Salzano AM, Lucretti S, Steinkellner H, Benvenuto E, Donini M (2016) Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures. Biotechnol J 11:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Lonoce C, Marusic C, Morrocchi E, Salzano AM, Scaloni A, Novelli F, Pioli C, Feeney M, Frigerio L, Donini M (2018) Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures. Biotechnol J. https://doi.org/10.1002/biot.201800081

    Article  PubMed  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science (New York, N.Y.) 268:716–719

    Article  CAS  Google Scholar 

  • Ma JK-C, Drossard J, Lewis D, Altmann F et al (2015) Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J 13:1106–1120

    Article  CAS  PubMed  Google Scholar 

  • Magy B, Tollet J, Laterre R, Boutry M, Navarre C (2014) Accumulation of secreted antibodies in plant cell cultures varies according to the isotype, host species and culture conditions. Plant Biotechnol J 12:457–467

    Article  CAS  PubMed  Google Scholar 

  • Marusic C, Pioli C, Stelter S, Novelli F, Lonoce C, Morrocchi E, Benvenuto E, Salzano AM, Scaloni A, Donini M (2018) N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions. Biotechnol Bioeng 115:565–576

    Article  CAS  PubMed  Google Scholar 

  • Mathieu-Rivet E, Kiefer-Meyer M-C, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M (2014) Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Front Plant Sci 5:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015) Hairy root biotechnology—indicative timeline to understand missing links and future outlook. Protoplasma 252:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Mercx S, Smargiasso N, Chaumont F, De Pauw E, Boutry M, Navarre C (2017) Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/cas9 strategy results in glycoproteins without plant-specific glycans. Front Plant Sci 8:403

    Article  PubMed  PubMed Central  Google Scholar 

  • Montero-Morales L, Steinkellner H (2018) Advanced plant-based glycan engineering. Front Bioeng Biotechnol 6:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Mor TS (2015) Molecular pharming’s foot in the FDA’s door: protalix’s trailblazing story. Biotechnol Lett 37:2147–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarre C, Smargiasso N, Duvivier L, Nader J, Far J, De Pauw E, Boutry M (2017) N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase. Transgenic Res 26:375–384

    Article  CAS  PubMed  Google Scholar 

  • Pillet S, Aubin É, Trépanier S, Bussière D, Dargis M, Poulin J-F, Yassine-Diab B, Ward BJ, Landry N (2016) A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin Immunol (Orlando, Fla.) 168:72–87

    Article  CAS  Google Scholar 

  • Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918

    Article  CAS  PubMed  Google Scholar 

  • PREVAIL II Writing Group, Multi-National PREVAIL II Study Team, Davey RT, Dodd L, Proschan MA, Neaton J et al (2016) A randomized, controlled trial of ZMapp for ebola virus infection. NE ngl J Med 375:1448–1456

    Article  CAS  Google Scholar 

  • Qiu X, Wong G, Audet J, Bello A et al (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rademacher T (2013) Method for the generation and cultivation of a plant cell pack. Patent WO2013/113504

  • Rademacher T, Sack M, Arcalis E, Stadlmann J et al (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201

    Article  CAS  PubMed  Google Scholar 

  • Raven N, Rasche S, Kuehn C, Anderlei T et al (2015) Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor. Biotechnol Bioeng 112:308–321

    Article  CAS  PubMed  Google Scholar 

  • Reski R, Parsons J, Decker EL (2015) Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol J 13:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sainsbury F, Sack M, Stadlmann J, Quendler H, Fischer R, Lomonossoff GP (2010) Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS ONE 5:e13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena P, Thuenemann EC, Sainsbury F, Lomonossoff GP (2016) Virus-derived vectors for the expression of multiple proteins in plants. Methods Mol Biol (Clifton, N.J.) 1385:39–54

    Article  CAS  Google Scholar 

  • Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19:5531–5542

    Article  CAS  PubMed  Google Scholar 

  • Shamriz S, Ofoghi H (2016) Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng Rev 32:92–106

    Article  CAS  PubMed  Google Scholar 

  • Shen J-S, Busch A, Day TS, Meng X-L et al (2016) Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. J Inherit Metabol Dis 39:293–303

    Article  CAS  Google Scholar 

  • Sheshukova EV, Komarova TV, Dorokhov YL (2016) Plant factories for the production of monoclonal antibodies. Biochemistry 81:1118–1135

    CAS  PubMed  Google Scholar 

  • Shukla AA, Wolfe LS, Mostafa SS, Norman C (2017) Evolving trends in mAb production processes. Bioeng Trans Med 2:58–69

    Article  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Bio/technology (Nature Publishing Company) 8:217–221

    CAS  Google Scholar 

  • Steinkellner H, Castilho A (2015) N-Glyco-engineering in plants: update on strategies and major achievements. Methods Mol Biol (Clifton, N.J.) 1321:195–212

    Article  Google Scholar 

  • Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H, Mach L, Glössl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402

    Article  CAS  PubMed  Google Scholar 

  • Tekoah Y, Shulman A, Kizhner T, Ruderfer I et al (2015) Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant Biotechnol J 13:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Tusé D, Ku N, Bendandi M, Becerra C et al (2015) Clinical safety and immunogenicity of tumor-targeted, plant-made Id-KLH conjugate vaccines for follicular lymphoma. Biomed Res Int 2015:648143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanier G, Lucas P-L, Loutelier-Bourhis C, Vanier J, Plasson C, Walet-Balieu M-L et al (2017) Heterologous expression of the N-acetylglucosaminyltransferase I dictates a reinvestigation of the N-glycosylation pathway in Chlamydomonas reinhardtii. Sci Rep 7:10156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanier G, Stelter S, Vanier J, Hempel F, Maier UG, Lerouge P, Ma J, Bardor M (2018) Alga-made anti-Hepatitis B antibody binds to human Fcγ receptors. Biotechnol J 13:e1700496

    Article  CAS  PubMed  Google Scholar 

  • Vasilev N, Grömping U, Lipperts A, Raven N, Fischer R, Schillberg S (2013) Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol J 11:867–874

    Article  CAS  PubMed  Google Scholar 

  • Weintraub JA, Hilton JF, White JM, Hoover CI, Wycoff KL, Yu L, Larrick JW, Featherstone JDB (2005) Clinical trial of a plant-derived antibody on recolonization of mutans streptococci. Caries Res 39:241–250

    Article  CAS  PubMed  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wongsamuth R, Doran PM (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54:401–415

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang N (2014) On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. Pharm Bioprocess 2:499–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30:1171–1184

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Weng Y, Dickey A, Wang KY (2015) Plants as Factories for human pharmaceuticals: applications and challenges. Int J Mol Sci 16:28549–28565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusibov V, Kushnir N, Streatfield SJ (2016) Antibody production in plants and green algae. Annu Rev Plant Biol 67:669–701

    Article  CAS  PubMed  Google Scholar 

  • Zischewski J, Sack M, Fischer R (2016) Overcoming low yields of plant-made antibodies by a protein engineering approach. Biotechnol J 11:107–116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Donini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donini, M., Marusic, C. Current state-of-the-art in plant-based antibody production systems. Biotechnol Lett 41, 335–346 (2019). https://doi.org/10.1007/s10529-019-02651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02651-z

Keywords

Navigation