Skip to main content

Advertisement

Log in

Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

15d-PGJ2 :

15-Deoxy-delta-12,14-prostaglandin J2

AA:

Arachidonic acid

ACE 2:

Angiotensin-converting enzyme 2

AKI:

Acute kidney injury

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

ATF6:

Activating transcription factor 6

BAL:

Bronchoalveolar lavages

BLT1:

B leukotriene subtype 1 receptor

BLT2:

B leukotriene subtype 2 receptor

CCL2:

Chemokine ligand 2 (also known as monocyte chemoattractant protein-1, MCP-1)

CHOP:

CCAAT-enhancer-binding protein homologous protein

COX-2:

Cyclooxygenase-2

cPGES:

Cytosolic prostaglandin E synthase

cPLA2 :

Cytosolic Phospholipase A2

CXCL10:

C-X-C motif chemokine ligand 10 (also known as Interferon gamma-​induced protein 10 (IP-10))

CYP:

Cytochrome P450

CYP4F3:

Cytochrome P450 4F3

CysLTs:

Cysteinyl leukotrienes

DGLA:

Dihomo-γ-linolenic acid

DHA:

Docosahexaenoic acid

DHET:

Dihydroxyeicosatrienoic acid

DP1:

Prostaglandin D2 receptor 1

DP2:

Prostaglandin D2 receptor 2

DPA:

Docosapentaenoic acid

EET:

Epoxyeicosatrienoic acid

eLOX3:

Epidermis-type lipoxygenase 3

EP3:

Prostaglandin E2 receptor EP3 subtype

EP4:

Prostaglandin E2 receptor EP4 subtype

EPA:

Eicosapentaenoic acid

ER:

Endoplasmic reticulum

EX:

Eoxin

FLAP:

5-Lipoxygenase-activating protein

GCSF:

Granulocyte colony-stimulating factor

GGT:

Gamma-glutamyl transferase

12HDH/15oPGR:

12-Hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase

HDHA:

Hydroxy docosahexaenoic acid

HDPA:

Hydroxydocosapentaenoic acid

HEPE:

Hydroxyeicosapentaenoic acid

HETE:

Hydroxyeicosatetraenoic acid

HETE:

Hydroxyeicosatetraenoic acid

HETrE:

Hydroxyeicosatrienoic acid

HODE:

Hydroxyloctadecadienoic acids

HOTrE:

Hydroxyoctadecatrienoic acid

HpDHA:

Hydro(peroxy)-docosahexaenoic acid

HpEPE:

Hydroperoxy-eicosapentaenoic acid

HPETE:

Hydroperoxyeicosatetraenoic acid

HPMVEC:

Human pulmonary microvascular endothelial cell

HX:

Hepoxilin

HXS:

Hepoxilin synthase

IFNγ:

Interferon gamma

IL:

Interleukin

IL1B:

Interleukin 1 beta

IP-10:

Interferon gamma-​induced protein 10 (also known as CXCL10, C-X-C motif chemokine ligand 10)

IRE1:

Inositol-requiring enzyme 1

LA:

Linoleic acid

LOX:

Lipoxygenase

LTA4 :

Leukotriene A4

LTA4H:

LTA4 hydrolase

LTB4 :

Leukotriene B4

LTC4 :

Leukotriene C4

LTD4 :

Leukotriene D4

LTE4 :

Leukotriene E4

LXA4 :

Lipoxin A4

LXB4 :

Lipoxin B4

MBD:

Membrane bound dipeptidase

MCP-1:

Monocyte chemoattractant protein-1 (also known as CCL2, chemokine ligand 2)

MDSC:

Myeloid monocyte-derived suppressor cells

MERS-CoV:

Middle east respiratory syndrome coronavirus

MIP1a:

Macrophage inflammatory protein 1 alpha

mPGES:

Microsomal prostaglandin E synthase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NSAID:

Nonsteroidal anti-inflammatory drugs

p38 MAPK:

P38 mitogen-activated kinase

PD1:

Protectin D1

PDX:

Protectin DX

PERK:

Protein kinase R-like ER kinase

PG:

Prostaglandins

PGD2 :

Prostaglandin D2

PGDKR:

PGD2-11-keto reductase

PGDS:

Prostaglandin D synthase

PGE2 :

Prostaglandin E2

PGES:

Prostaglandin E synthase

PGF :

Prostaglandin F

PGFS:

Prostaglandin F2α synthase

PGH2 :

Prostaglandin H2

PGI2 :

Prostaglandin I2 (prostacyclin)

PGIS:

Prostaglandin I2 synthase

PGJ2 :

Prostaglandin J2

PI3K:

Phosphoinositide 3-kinase

PKA:

CAMP-dependent protein kinase

PLA2 :

Phospholipase A2

PPARγ:

Peroxisome proliferator-activated receptor γ

ROS:

Reactive oxygen species

Rv:

Resolvin

S protein:

Spike protein

SARS-CoV:

Severe acute respiratory syndrome coronavirus

sEH:

Soluble epoxide hydrolase

SPM:

Specialized proresolving mediators

TMPRSS2:

Transmembrane serine protease 2

TNFα:

Tumor necrosis factor alpha

TP:

Thromboxane A2 receptor

TXA2 :

Thromboxane A2

TXAS:

Thromboxane A2 synthase

TXB2 :

Thromboxane B2

UPR:

Unfolded-protein response

XBP1:

X box-binding protein 1

References

  1. Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica., 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duong, D. (2021). Alpha, Beta, Delta, Gamma What’s important to know about SARS-CoV-2 variants of concern? Canadian Medical Association Journal., 193(27), E1059–E1060. https://doi.org/10.1503/cmaj.1095949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rahman, S., Montero, M. T. V., Rowe, K., Kirton, R., & Kunik, F., Jr. (2021). Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: A review of current evidence. Expert Review of Clinical Pharmacology, 14(5), 601–621. https://doi.org/10.1080/17512433.2021.1902303

    Article  CAS  PubMed  Google Scholar 

  4. Abdullah, F., Myers, J., Basu, D., Tintinger, G., Ueckermann, V., Mathebula, M., et al. (2022). Decreased severity of disease during the first global omicron variant covid-19 outbreak in a large hospital in tshwane, south africa. International Journal of Infectious Diseases, 116, 38–42. https://doi.org/10.1016/j.ijid.2021.12.357

    Article  CAS  PubMed  Google Scholar 

  5. Coperchini, F., Chiovato, L., Croce, L., Magri, F., & Rotondi, M. (2020). The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews., 53, 25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003

    Article  CAS  Google Scholar 

  6. Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhatia, M., Zemans, R. L., & Jeyaseelan, S. (2012). Role of chemokines in the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology., 46(5), 566–572. https://doi.org/10.1165/rcmb.2011-0392TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ye, Q., Wang, B., & Mao, J. (2020). The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. Journal of Infection, 80(6), 607–613. https://doi.org/10.1016/j.jinf.2020.03.037

    Article  CAS  PubMed  Google Scholar 

  9. Channappanavar, R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K., et al. (2016). Dysregulated Type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe., 19(2), 181–193. https://doi.org/10.1016/j.chom.2016.01.007

    Article  CAS  Google Scholar 

  10. Herold, S., Steinmueller, M., von Wulffen, W., Cakarova, L., Pinto, R., Pleschka, S., et al. (2008). Lung epithelial apoptosis in influenza virus pneumonia: The role of macrophage-expressed TNF-related apoptosis-inducing ligand. Journal of Experimental Medicine., 205(13), 3065–3077. https://doi.org/10.1084/jem.20080201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hogner, K., Wolff, T., Pleschka, S., Plog, S., Gruber, A. D., Kalinke, U., et al. (2013). Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLOS Pathogens., 9(2), e1003188. https://doi.org/10.1371/journal.ppat.1003188

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rodrigue-Gervais, I. G., Labbe, K., Dagenais, M., Dupaul-Chicoine, J., Champagne, C., Morizot, A., et al. (2014). Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host & Microbe, 15(1), 23–35. https://doi.org/10.1016/j.chom.2013.12.003

    Article  CAS  Google Scholar 

  13. Hammock, B. D., Wang, W., Gilligan, M. M., & Panigrahy, D. (2020). Eicosanoids: The Overlooked Storm in Coronavirus Disease 2019 (COVID-19)? The American Journal of Pathology., 190(9), 1782–1788. https://doi.org/10.1016/j.ajpath.2020.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jorgensen, I., Rayamajhi, M., & Miao, E. A. (2017). Programmed cell death as a defence against infection. Nature Reviews Immunology., 17(3), 151–164. https://doi.org/10.1038/nri.2016.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gartung, A., Yang, J., Sukhatme, V. P., Bielenberg, D. R., Fernandes, D., Chang, J., et al. (2019). Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proceedings of the National Academy of Sciences of the United States of America., 116(5), 1698–1703. https://doi.org/10.1073/pnas.1803999116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology., 39(5), 529–539. https://doi.org/10.1007/s00281-017-0629-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scheller, J., & Rose-John, S. (2006). Interleukin-6 and its receptor: From bench to bedside. Medical Microbiology and Immunology, 195(4), 173–183. https://doi.org/10.1007/s00430-006-0019-9

    Article  CAS  PubMed  Google Scholar 

  18. Smits, S. L., de Lang, A., van den Brand, J. M., Leijten, L. M., van, I.W.F., Eijkemans, M, J., et al. (2010). Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathogens., 6(2), e1000756. https://doi.org/10.1371/journal.ppat.1000756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panigrahy, D., Gilligan, M. M., Huang, S., Gartung, A., Cortes-Puch, I., Sime, P. J., et al. (2020). Inflammation resolution: A dual-pronged approach to averting cytokine storms in COVID-19? Cancer and Metastasis Reviews, 39(2), 337–340. https://doi.org/10.1007/s10555-020-09889-4

    Article  CAS  PubMed  Google Scholar 

  20. Schroder, M., & Kaufman, R. J. (2005). The mammalian unfolded protein response. Annual Review of Biochemistry, 74, 739–789. https://doi.org/10.1146/annurev.biochem.73.011303.074134

    Article  CAS  PubMed  Google Scholar 

  21. Chan, C. P., Siu, K. L., Chin, K. T., Yuen, K. Y., Zheng, B., & Jin, D. Y. (2006). Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. Journal of Virology., 80(18), 9279–9287. https://doi.org/10.1128/JVI.00659-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Versteeg, G. A., van de Nes, P. S., Bredenbeek, P. J., & Spaan, W. J. (2007). The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations. Journal of Virology, 81(20), 10981–10990. https://doi.org/10.1128/JVI.01033-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891. https://doi.org/10.1016/s0092-8674(01)00611-0

    Article  CAS  PubMed  Google Scholar 

  24. Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology., 23(21), 7448–7459. https://doi.org/10.1128/MCB.23.21.7448-7459.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chopra, S., Giovanelli, P., Alvarado-Vazquez, P. A., Alonso, S., Song, M., Sandoval, T. A., et al. (2019). IRE1alpha-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science. https://doi.org/10.1126/science.aau6499

    Article  PubMed  Google Scholar 

  26. Shi, C. S., Nabar, N. R., Huang, N. N., & Kehrl, J. H. (2019). SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov., 5, 101. https://doi.org/10.1038/s41420-019-0181-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, M., Gu, C., Wu, J., & Zhu, Y. (2006). Amino acids 1 to 422 of the spike protein of SARS associated coronavirus are required for induction of cyclooxygenase-2. Virus Genes, 33(3), 309–317. https://doi.org/10.1007/s11262-005-0070-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan, X., Hao, Q., Mu, Y., Timani, K. A., Ye, L., Zhu, Y., et al. (2006). Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. International Journal of Biochemistry & Cell Biology, 38(8), 1417–1428. https://doi.org/10.1016/j.biocel.2006.02.003

    Article  CAS  Google Scholar 

  29. Schmelzer, K. R., Kubala, L., Newman, J. W., Kim, I. H., Eiserich, J. P., & Hammock, B. D. (2005). Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci U S A., 102(28), 9772–9777. https://doi.org/10.1073/pnas.0503279102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. von Moltke, J., Trinidad, N. J., Moayeri, M., Kintzer, A. F., Wang, S. B., van Rooijen, N., et al. (2012). Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature, 490(7418), 107–111. https://doi.org/10.1038/nature11351

    Article  CAS  Google Scholar 

  31. Tielemans, B., Stoian, L., Gijsbers, R., Michiels, A., Wagenaar, A., Farre Marti, R., et al. (2019). Cytokines trigger disruption of endothelium barrier function and p38 MAP kinase activation in BMPR2-silenced human lung microvascular endothelial cells. Pulm Circ., 9(4), 2045894019883607. https://doi.org/10.1177/2045894019883607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, K. J., Su, I. J., Theron, M., Wu, Y. C., Lai, S. K., Liu, C. C., et al. (2005). An interferon-gamma-related cytokine storm in SARS patients. Journal of Medical Virology., 75(2), 185–194. https://doi.org/10.1002/jmv.20255

    Article  CAS  PubMed  Google Scholar 

  33. Choo-Wing, R., Syed, M. A., Harijith, A., Bowen, B., Pryhuber, G., Janer, C., et al. (2013). Hyperoxia and interferon-gamma-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. American Journal of Respiratory Cell and Molecular Biology., 48(6), 749–757. https://doi.org/10.1165/rcmb.2012-0381OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baghaki, S., Yalcin, C. E., Baghaki, H. S., Aydin, S. Y., Daghan, B., & Yavuz, E. (2020). COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. International Journal of Infectious Diseases., 101, 29–32. https://doi.org/10.1016/j.ijid.2020.09.1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dennis, E. A., & Norris, P. C. (2015). Eicosanoid storm in infection and inflammation. Nature Reviews Immunology., 15(8), 511–523. https://doi.org/10.1038/nri3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Serhan, C. N. (2014). Pro-resolving lipid mediators are leads for resolution physiology. Nature, 510(7503), 92–101. https://doi.org/10.1038/nature13479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, B., Wu, L., Chen, J., Dong, L., Chen, C., Wen, Z., et al. (2021). Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduction and Targeted Therapy, 6(1), 94. https://doi.org/10.1038/s41392-020-00443-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rahman, M. S., Khan, F., Syeda, P. K., Nishimura, K., Jisaka, M., Nagaya, T., et al. (2014). Endogenous synthesis of prostacyclin was positively regulated during the maturation phase of cultured adipocytes. Cytotechnology, 66(4), 635–646. https://doi.org/10.1007/s10616-013-9616-9

    Article  CAS  PubMed  Google Scholar 

  39. Khan, F., Syeda, P. K., Nartey, M. N., Rahman, M. S., Islam, M. S., Nishimura, K., et al. (2016). Stimulation of fat storage by prostacyclin and selective agonists of prostanoid IP receptor during the maturation phase of cultured adipocytes. Cytotechnology, 68(6), 2417–2429. https://doi.org/10.1007/s10616-016-9960-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chowdhury, A. A., Rahman, M. S., Nishimura, K., Jisaka, M., Nagaya, T., Ishikawa, T., et al. (2011). 15-Deoxy-D12,14-prostaglandin J2 interferes inducible synthesis of prostaglandins E2 and F2a that suppress subsequent adipogenesis program in cultured preadipocytes. Prostaglandins & Other Lipid Mediators., 95(1–4), 53–62. https://doi.org/10.1016/j.prostaglandins.2011.06.002

    Article  CAS  Google Scholar 

  41. Hossain, M. S., Chowdhury, A. A., Rahman, M. S., Nishimura, K., Jisaka, M., Nagaya, T., et al. (2011). Development of enzyme-linked immunosorbent assay for Δ 12-PG2 and its application to the measurement of the endogenous product generated by cultured adipocytes during the maturation phase. Prostaglandins & Other Lipid Mediators., 94(3–4), 73–80. https://doi.org/10.1016/j.prostaglandins.2010.12.005

    Article  CAS  Google Scholar 

  42. Hopkins, N. K., & Gorman, R. R. (1981). Regulation of 3T3-L1 fibroblast differentiation by prostacyclin (prostaglandin I2). Biochimica et Biophysica Acta., 663(2), 457–466. https://doi.org/10.1016/0005-2760(81)90174-0

    Article  CAS  PubMed  Google Scholar 

  43. Xu, L., Miyoshi, H., Nishimura, K., Jisaka, M., Nagaya, T., & Yokota, K. (2007). Gene expression of isoformic enzymes in arachidonate cyclooxygenase pathway and the regulation by tumor necrosis factor alpha during life cycle of adipocytes. Prostaglandins & Other Lipid Mediators, 83(3), 213–218. https://doi.org/10.1016/j.prostaglandins.2007.01.009

    Article  CAS  Google Scholar 

  44. Rahman, M. S. (2019). Prostacyclin: A major prostaglandin in the regulation of adipose tissue development. Journal of Cellular Physiology, 234(4), 3254–3262. https://doi.org/10.1002/jcp.26932

    Article  CAS  PubMed  Google Scholar 

  45. Schilling, M., Gassmann, N., Regli, B., Stoupis, C., & Buckler, M. W. (1996). Increased thromboxane B2 and prostaglandin E2 levels precede clinical acute respiratory distress syndrome after esophageal resection. Digestive Surgery, 13(4–5), 273–276.

    Article  Google Scholar 

  46. Slotman, G. J., Burchard, K. W., & Gann, D. S. (1985). Thromboxane and prostacyclin in clinical acute respiratory failure. Journal of Surgical Research, 39(1), 1–7. https://doi.org/10.1016/0022-4804(85)90154-4

    Article  CAS  PubMed  Google Scholar 

  47. Deby-Dupont, G., Braun, M., Lamy, M., Deby, C., Pincemail, J., Faymonville, M. E., et al. (1987). Thromboxane and prostacyclin release in adult respiratory distress syndrome. Intensive Care Medicine., 13(3), 167–174.

    Article  CAS  PubMed  Google Scholar 

  48. D’Elia, R. V., Harrison, K., Oyston, P. C., Lukaszewski, R. A., & Clark, G. C. (2013). Targeting the “cytokine storm” for therapeutic benefit. Clinical and Vaccine Immunology., 20(3), 319–327. https://doi.org/10.1128/CVI.00636-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aso, H., Ito, S., Mori, A., Morioka, M., Suganuma, N., Kondo, M., et al. (2012). Prostaglandin E2 enhances interleukin-8 production via EP4 receptor in human pulmonary microvascular endothelial cells. American Journal of Physiology—Lung Cellular and Molecular Physiology., 302(2), L266–L273. https://doi.org/10.1152/ajplung.00248.2011

    Article  CAS  PubMed  Google Scholar 

  50. Tsuge, K., Inazumi, T., Shimamoto, A., & Sugimoto, Y. (2019). Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. International Immunology, 31(9), 597–606. https://doi.org/10.1093/intimm/dxz021

    Article  CAS  PubMed  Google Scholar 

  51. McLoughlin, R. M., Hurst, S. M., Nowell, M. A., Harris, D. A., Horiuchi, S., Morgan, L. W., et al. (2004). Differential regulation of neutrophil-activating chemokines by IL-6 and its soluble receptor isoforms. Journal of Immunology., 172(9), 5676–5683. https://doi.org/10.4049/jimmunol.172.9.5676

    Article  CAS  Google Scholar 

  52. Ricke-Hoch, M., Stelling, E., Lasswitz, L., Gunesch, A. P., Kasten, M., Zapatero-Belinchon, F. J., et al. (2021). Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease. PLoS ONE, 16(8), e0255335. https://doi.org/10.1371/journal.pone.0255335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakao, S., Ogtata, Y., Shimizu, E., Yamazaki, M., Furuyama, S., & Sugiya, H. (2002). Tumor necrosis factor alpha (TNF-alpha)-induced prostaglandin E2 release is mediated by the activation of cyclooxygenase-2 (COX-2) transcription via NFkappaB in human gingival fibroblasts. Molecular and Cellular Biochemistry, 238(1–2), 11–18. https://doi.org/10.1023/A:1019927616000

    Article  CAS  PubMed  Google Scholar 

  54. Kaneko, N., Kuo, H. H., Boucau, J., Farmer, J. R., Allard-Chamard, H., Mahajan, V. S., et al. (2020). Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell. https://doi.org/10.1016/j.cell.2020.08.025

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jandl, K., Stacher, E., Balint, Z., Sturm, E. M., Maric, J., Peinhaupt, M., et al. (2016). Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung. Journal of Allergy and Clinical Immunology., 137(3), 833–843. https://doi.org/10.1016/j.jaci.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  56. Gupta, A., Kalantar-Zadeh, K., & Reddy, S. T. (2020). Ramatroban as a novel immunotherapy for COVID-19. Journal of Molecular and Genetic Medicine. https://doi.org/10.37421/jmgm.2020.14.457

    Article  PubMed  Google Scholar 

  57. Cloutier, A., Marois, I., Cloutier, D., Verreault, C., Cantin, A. M., & Richter, M. V. (2012). The prostanoid 15-deoxy-Δ12,14-prostaglandin-j2 reduces lung inflammation and protects mice against lethal influenza infection. The Journal of Infectious Diseases., 205(4), 621–630. https://doi.org/10.1093/infdis/jir804

    Article  CAS  PubMed  Google Scholar 

  58. Hoxha, M. (2020). What about COVID-19 and arachidonic acid pathway? European Journal of Clinical Pharmacology., 76(11), 1501–1504. https://doi.org/10.1007/s00228-020-02941-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, J., Zhao, J., Legge, K., & Perlman, S. (2011). Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. The Journal of Clinical Investigation., 121(12), 4921–4930. https://doi.org/10.1172/JCI59777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ogletree, M. L., Chander Chiang, K., Kulshrestha, R., Agarwal, A., Agarwal, A., & Gupta, A. (2022). Treatment of COVID-19 pneumonia and acute respiratory distress with ramatroban, a thromboxane A2 and prostaglandin D2 receptor antagonist: A four-patient case series report. Frontiers in Pharmacology, 13, 904020. https://doi.org/10.3389/fphar.2022.904020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Larsson, A. K., Hagfjärd, A., Dahlén, S. E., & Adner, M. (2011). Prostaglandin D2 induces contractions through activation of TP receptors in peripheral lung tissue from the guinea pig. European Journal of Pharmacology, 669(1–3), 136–142. https://doi.org/10.1016/j.ejphar.2011.07.046

    Article  CAS  PubMed  Google Scholar 

  62. Archam bault, A. S., Zaid, Y., Rakotoarivelo, V., Turcotte, C., Dore, E., Dubuc, I., et al. (2021). High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB Journal., 35(6), e21666. https://doi.org/10.1096/fj.202100540R

    Article  Google Scholar 

  63. Wong, L. R., Zheng, J., Wilhelmsen, K., Li, K., Ortiz, M. E., Schnicker, N. J., et al. (2022). Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature, 605(7908), 146–151. https://doi.org/10.1038/s41586-022-04630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Verma, H., Mendiratta, N., & Tripathi, R. K. (2022). Prostaglandin E1 infusion could improve outcomes in COVID-related limb ischemia—a single operator series of 17 patients. Journal of Vascular Surgery, 75(6), e291–e292. https://doi.org/10.1016/j.jvs.2022.03.658

    Article  PubMed Central  Google Scholar 

  65. Shimizu, T., Izumi, T., Seyama, Y., & Tadokoro, K. (1986). Radmark O, Samuelsson B, Characterization of leukotriene A4 synthase from murine mast cells: Evidence for its identity to arachidonate 5-lipoxygenase. Proc Natl Acad Sci U S A., 83(12), 4175–4179. https://doi.org/10.1073/pnas.83.12.4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lewis, R. A., Austen, K. F., & Soberman, R. J. (1990). Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. New England Journal of Medicine., 323(10), 645–655. https://doi.org/10.1056/NEJM199009063231006

    Article  CAS  PubMed  Google Scholar 

  67. Peters-Golden, M., Gleason, M. M., & Togias, A. (2006). Cysteinyl leukotrienes: Multi-functional mediators in allergic rhinitis. Clinical and Experimental Allergy, 36(6), 689–703. https://doi.org/10.1111/j.1365-2222.2006.02498.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bäck, M., Sultan, A., Ovchinnikova, O., & Hansson, G. K. (2007). 5-Lipoxygenase-activating protein: A potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation. Circulation Research., 100(7), 946–949. https://doi.org/10.1161/01.RES.0000264498.60702.0d

    Article  CAS  PubMed  Google Scholar 

  69. Snelgrove, R. J., Jackson, P. L., Hardison, M. T., Noerager, B. D., Kinloch, A., Gaggar, A., et al. (2010). A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science, 330(6000), 90–94. https://doi.org/10.1126/science.1190594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wheelan, P., Sala, A., Folco, G., Nicosia, S., Falck, J. R., Bhatt, R. K., et al. (1994). Stereochemical analysis and biological activity of 3-hydroxy-leukotriene B4: A metabolite from ethanol-treated rat hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 271(3), 1514–1519.

    CAS  PubMed  Google Scholar 

  71. Fitzpatrick, F., Haeggstrom, J., Granstrom, E., & Samuelsson, B. (1983). Metabolism of leukotriene A4 by an enzyme in blood plasma: A possible leukotactic mechanism. Proceedings of the National Academy of Sciences of the United States of America., 80(17), 5425–5429. https://doi.org/10.1073/pnas.80.17.5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Munafo, D. A., Shindo, K., Baker, J. R., & Bigby, T. D. (1994). Leukotriene A4 hydrolase in human bronchoalveolar lavage fluid. Journal of Clinical Investigation., 93(3), 1042–1050. https://doi.org/10.1172/JCI117053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Low, C. M., Akthar, S., Patel, D. F., Loser, S., Wong, C. T., Jackson, P. L., et al. (2017). The development of novel LTA4H modulators to selectively target LTB4 generation. Scientific Reports., 7, 44449. https://doi.org/10.1038/srep44449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haeggstrom, J. Z. (2004). Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. Journal of Biological Chemistry., 279(49), 50639–50642. https://doi.org/10.1074/jbc.R400027200

    Article  CAS  PubMed  Google Scholar 

  75. Bhatt, L., Roinestad, K., Van, T., & Springman, E. B. (2017). Recent advances in clinical development of leukotriene B4 pathway drugs. Seminars in Immunology., 33, 65–73. https://doi.org/10.1016/j.smim.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  76. Funk, C. D., & Ardakani, A. (2020). A novel strategy to mitigate the hyperinflammatory response to COVID-19 by targeting leukotrienes. Frontiers in Pharmacology., 11, 1214. https://doi.org/10.3389/fphar.2020.01214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Watanabe, M., Machida, K., & Inoue, H. (2014). A turn on and a turn off: BLT1 and BLT2 mechanisms in the lung. Expert Review of Respiratory Medicine, 8(4), 381–383. https://doi.org/10.1586/17476348.2014.908715

    Article  CAS  PubMed  Google Scholar 

  78. Aigner, L., Pietrantonio, F., Bessa de Sousa, D. M., Michael, J., Schuster, D., Reitsamer, H. A., et al. (2020). The leukotriene receptor antagonist montelukast as a potential COVID-19 therapeutic. Frontiers in Molecular Biosciences., 7, 610132. https://doi.org/10.3389/fmolb.2020.610132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Capra, V. (2004). Molecular and functional aspects of human cysteinyl leukotriene receptors. Pharmacological Research., 50(1), 1–11. https://doi.org/10.1016/j.phrs.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  80. Duah, E., Adapala, R. K., Al-Azzam, N., Kondeti, V., Gombedza, F., Thodeti, C. K., et al. (2013). Cysteinyl leukotrienes regulate endothelial cell inflammatory and proliferative signals through CysLT(2) and CysLT(1) receptors. Scientific Reports., 3, 3274. https://doi.org/10.1038/srep03274

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kanaoka, Y., & Boyce, J. A. (2004). Cysteinyl leukotrienes and their receptors: Cellular distribution and function in immune and inflammatory responses. Journal of Immunology., 173(3), 1503–1510. https://doi.org/10.4049/jimmunol.173.3.1503

    Article  CAS  Google Scholar 

  82. Maeba, S., Ichiyama, T., Ueno, Y., Makata, H., Matsubara, T., & Furukawa, S. (2005). Effect of montelukast on nuclear factor kappaB activation and proinflammatory molecules. Annals of Allergy, Asthma & Immunology., 94(6), 670–674. https://doi.org/10.1016/S1081-1206(10)61326-9

    Article  CAS  Google Scholar 

  83. Auner, B., Geiger, E. V., Henrich, D., Lehnert, M., Marzi, I., & Relja, B. (2012). Circulating leukotriene B4 identifies respiratory complications after trauma. Mediators of Inflammation., 2012, 536156. https://doi.org/10.1155/2012/536156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Takahashi, G., Shibata, S., & Endo, S. (2017). Eicosanoids as risk and prognostic factors for acute respiratory distress syndrome in sepsis patients. J Pulm Respir Med., 7(6), 435. https://doi.org/10.4172/2161-105X.1000435

    Article  Google Scholar 

  85. Amat, M., Barcons, M., Mancebo, J., Mateo, J., Oliver, A., Mayoral, J.-F., et al. (2000). Evolution of leukotriene B4, peptide leukotrienes, and interleukin-8 plasma concentrations in patients at risk of acute respiratory distress syndrome and with acute respiratory distress syndrome: Mortality prognostic study. Critical Care Medicine., 28(1), 57–62. https://doi.org/10.1097/00003246-200001000-00009

    Article  CAS  PubMed  Google Scholar 

  86. Westcott, J. Y., Thomas, R. B., & Voelkel, N. F. (1991). Elevated urinary leukotriene E4 excretion in patients with ARDS and severe burns. Prostaglandins Leukotrienes and Essential Fatty Acids, 43(3), 151–158. https://doi.org/10.1016/0952-3278(91)90162-x

    Article  CAS  PubMed  Google Scholar 

  87. Werz, O., & Steinhilber, D. (2006). Therapeutic options for 5-lipoxygenase inhibitors. Pharmacology & Therapeutics, 112(3), 701–718. https://doi.org/10.1016/j.pharmthera.2006.05.009

    Article  CAS  Google Scholar 

  88. Tsai, M. J., Chang, W. A., Tsai, P. H., Wu, C. Y., Ho, Y. W., Yen, M. C., et al. (2017). Montelukast induces apoptosis-inducing factor-mediated cell death of lung cancer cells. International Journal of Molecular Science. https://doi.org/10.3390/ijms18071353

    Article  Google Scholar 

  89. Spector, A. A. (2009). Arachidonic acid cytochrome P450 epoxygenase pathway. Journal of Lipid Research, 50(Suppl), S52–S56. https://doi.org/10.1194/jlr.R800038-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tacconelli, S., & Patrignani, P. (2014). Inside epoxyeicosatrienoic acids and cardiovascular disease. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2014.00239

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gilroy, D. W., Edin, M. L., De Maeyer, R. P., Bystrom, J., Newson, J., Lih, F. B., et al. (2016). CYP450-derived oxylipins mediate inflammatory resolution. Proceedings of the National Academy of Sciences of the United States of America., 113(23), E3240–E3249. https://doi.org/10.1073/pnas.1521453113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thomson, S. J., Askari, A., & Bishop-Bailey, D. (2012). Anti-inflammatory effects of epoxyeicosatrienoic acids. International Journal of Vascular Medicine., 2012, 605101. https://doi.org/10.1155/2012/605101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deng, Y., Edin, M. L., Theken, K. N., Schuck, R. N., Flake, G. P., Kannon, M. A., et al. (2011). Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. FASEB Journal., 25(2), 703–713. https://doi.org/10.1096/fj.10-171488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu, G., Zeng, X., Wang, H., Hou, Q., Tan, C., Xu, Q., et al. (2015). 14,15-epoxyeicosatrienoic acid suppresses cigarette smoke extract-induced apoptosis in lung epithelial cells by inhibiting endoplasmic reticulum stress. Cellular Physiology and Biochemistry., 36(2), 474–486. https://doi.org/10.1159/000430113

    Article  CAS  PubMed  Google Scholar 

  95. Wang, D., & Dubois, R. N. (2012). Epoxyeicosatrienoic acids: A double-edged sword in cardiovascular diseases and cancer. The Journal of Clinical Investigation, 122(1), 19–22. https://doi.org/10.1172/JCI61453

    Article  CAS  PubMed  Google Scholar 

  96. Bellien, J., & Joannides, R. (2013). Epoxyeicosatrienoic acid pathway in human health and diseases. Journal of Cardiovascular Pharmacology., 61(3), 188–196. https://doi.org/10.1097/FJC.0b013e318273b007

    Article  CAS  PubMed  Google Scholar 

  97. Norris, P. C., Gosselin, D., Reichart, D., Glass, C. K., & Dennis, E. A. (2014). Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. Proc Natl Acad Sci U S A., 111(35), 12746–12751. https://doi.org/10.1073/pnas.1404372111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Snider, J. M., You, J. K., Wang, X., Snider, A. J., Hallmark, B., Zec, M. M., et al. (2021). Group IIA secreted phospholipase A2 is associated with the pathobiology leading to COVID-19 mortality. Journal of Clinical Investigation. https://doi.org/10.1172/JCI149236

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kuypers, F. A., Rostad, C. A., Anderson, E. J., Chahroudi, A., Jaggi, P., Wrammert, J., et al. (2021). Secretory phospholipase A2 in SARS-CoV-2 infection and multisystem inflammatory syndrome in children (MIS-C). Experimental Biology and Medicine., 246(23), 2543–2552. https://doi.org/10.1177/15353702211028560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Trostchansky, A., Souza, J. M., Ferreira, A., Ferrari, A., Blanco, F., & Trujillo, M. (2007). Synthesis, isomer characterization, and anti-Inflammatory properties of nitroarachidonate. Biochemistry, 46(15), 45–53.

    Article  Google Scholar 

  101. Baral, P. K., Amin, M. T., Rashid, M. M. O., & Hossain, M. S. (2022). Assessement of polyunsaturated fatty acids on COVID-19 associated risk reduction. Brazilian Journal of Pharmacognosy., 32, 50–64. https://doi.org/10.1007/s43450-021-00213-x

    Article  CAS  PubMed  Google Scholar 

  102. Ripon, M. A. R., Bhowmik, D. R., Amin, M. T., & Hossain, M. S. (2021). Role of Arachidonic cascade in COVID-19 infection. Prostaglandin and Other lipid mediators., 154, 106539. https://doi.org/10.1016/j.prostaglandins.2021.106539

    Article  CAS  Google Scholar 

  103. Beigel, J. H., Tomashek, K. M., Dodd, L. E., Metha, A. K., et al. (2022). Remidisivir for the traetment of COVID-19, Final Report. New Enland Journal of Medicine., 383, 1813–1826.

    Article  Google Scholar 

  104. Navabshan, I., Sakthivel, B., Pandiyan, R., Antoniraj, M. G., Dharmaraj, S., Ashokkumar, V., Khoo, K.S., Chew, K.W,. Sugumaran, A., Show, P.L. (2021) Computational lock and key and dynamic trajectory analysis of natural biophors against COVID-19 spike protein to identify effective lead molecules. Mol Biotechnol. Oct;63(10):898–908. doi: https://doi.org/10.1007/s12033-021-00358-z. Epub 2021 Jun 22. Erratum in: Mol Biotechnol. 2021 Aug 10;: PMID: 34159564; PMCID: PMC8219180.

  105. Park, J. H., Park, E. B., Lee, J. Y., & Min, J. Y. (2016). Identification of novel membrane-associated prostaglandin E synthase-1 (mPGES-1) inhibitors with anti-influenza activities in vitro. Biochemical and Biophysical Research Communications, 469(4), 848–855. https://doi.org/10.1016/j.bbrc.2015.11.129

    Article  CAS  PubMed  Google Scholar 

  106. Gross, S., Tilly, P., Hentsch, D., Vonesch, J. L., & Fabre, J. E. (2007). Vascular wall-produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors. Journal of Experimental Medicine., 204(2), 311–320. https://doi.org/10.1084/jem.20061617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Janssen, M. C. H., Koene, S., de Laat, P., Hemelaar, P., Pickkers, P., Spaans, E., et al. (2019). The KHENERGY Study: Safety and Efficacy of KH176 in Mitochondrial m.3243A>G Spectrum Disorders. Clinical Pharmacology & Therapeutics., 105(1), 101–111. https://doi.org/10.1002/cpt.1197

    Article  CAS  Google Scholar 

  108. Beyrath, J., Pellegrini, M., Renkema, H., Houben, L., Pecheritsyna, S., van Zandvoort, P., et al. (2018). KH176 safeguards mitochondrial diseased cells from redox stress-induced cell death by interacting with the thioredoxin system/peroxiredoxin enzyme machinery. Scientific Reports., 8(1), 6577. https://doi.org/10.1038/s41598-018-24900-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, J., Wang, Y., Johnson, M. G., Li, A.-R., Shen, W., Wang, X., et al. (2012). Optimization of phenylacetic acid derivatives for balanced CRTH2 and DP dual antagonists. Bioorganic & Medicinal Chemistry Letters., 22(4), 1686–1689. https://doi.org/10.1016/j.bmcl.2011.12.107

    Article  CAS  Google Scholar 

  110. Sala, A., Murphy, R. C., & Voelkel, N. F. (1991). Direct airway injury results in elevated levels of sulfidopeptide leukotrienes, detectable in airway secretions. Prostaglandins, 42(1), 1–7. https://doi.org/10.1016/0090-6980(91)90088-w

    Article  CAS  PubMed  Google Scholar 

  111. Bernard, G. R., Korley, V., Chee, P., Swindell, B., Ford-Hutchinson, A. W., & Tagari, P. (1991). Persistent generation of peptido leukotrienes in patients with the adult respiratory distress syndrome. The American Review of Respiratory Disease., 144(2), 263–267. https://doi.org/10.1164/ajrccm/144.2.263

    Article  CAS  PubMed  Google Scholar 

  112. Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., et al. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B., 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Almerie, M. Q., & Kerrigan, D. D. (2020). The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. Medical Hypotheses., 143, 109883. https://doi.org/10.1016/j.mehy.2020.109883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schunck, W. H., Konkel, A., Fischer, R., & Weylandt, K. H. (2018). Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacology & Therapeutics, 183, 177–204. https://doi.org/10.1016/j.pharmthera.2017.10.016

    Article  CAS  Google Scholar 

  115. Lopez-Vicario, C., Alcaraz-Quiles, J., Garcia-Alonso, V., Rius, B., Hwang, S. H., Titos, E., et al. (2015). Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: Role for omega-3 epoxides. Proceedings of the National Academy of Sciences of the United States of America., 112(2), 536–541. https://doi.org/10.1073/pnas.14225901

    Article  CAS  PubMed  Google Scholar 

  116. Xia, R., Sun, L., Liao, J., Li, H., You, X., Xu, D., et al. (2019). Inhibition of pancreatic carcinoma growth through enhancing ω-3 epoxy polyunsaturated fatty acid profile by inhibition of soluble epoxide hydrolase. Anticancer Research., 39(7), 3651–3660. https://doi.org/10.21873/anticanres.13513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zeldin, D. C. (2001). Epoxygenase pathways of arachidonic acid metabolism. Journal of Biological Chemistry, 276(39), 36059–36062. https://doi.org/10.1074/jbc.R100030200

    Article  CAS  PubMed  Google Scholar 

  118. Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nature Reviews Drug Discovery., 8(10), 794–805. https://doi.org/10.1038/nrd2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou, Y., Liu, T., Duan, J. X., Li, P., Sun, G. Y., Liu, Y. P., et al. (2017). Soluble epoxide hydrolase inhibitor attenuates lipopolysaccharide-induced acute lung injury and improves survival in mice. Shock, 47(5), 638–645. https://doi.org/10.1097/SHK.0000000000000767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ono, E., Dutile, S., Kazani, S., Wechsler, M. E., Yang, J., Hammock, B. D., et al. (2014). Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. American Journal of Respiratory and Critical Care Medicine., 190(8), 886–897. https://doi.org/10.1164/rccm.201403-0544OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goswami, S. K., Wan, D., Yang, J., Trindade da Silva, C. A., Morisseau, C., Kodani, S. D., et al. (2016). Anti-ulcer efficacy of soluble epoxide hydrolase inhibitor TPPU on diclofenac-induced intestinal ulcers. The Journal of Pharmacology and Experimental Therapeutics., 357(3), 529–536. https://doi.org/10.1124/jpet.116.232108

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ghosh, R., Goswami, S. K., Feitoza, L., Hammock, B., & Gomes, A. V. (2016). Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts. International Journal of Cardiology., 223, 923–935. https://doi.org/10.1016/j.ijcard.2016.08.233

    Article  PubMed  Google Scholar 

  123. Panigrahy, D., Gartung, A., Yang, J., Yang, H., Gilligan, M. M., Sulciner, M. L., et al. (2019). Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. The Journal of Clinical Investigation, 129(7), 2964–2979. https://doi.org/10.1172/JCI127282

    Article  PubMed  PubMed Central  Google Scholar 

  124. Barden, A. E., Mas, E., & Mori, T. A. (2016). n-3 Fatty acid supplementation and proresolving mediators of inflammation. Current Opinion in Lipidology., 27(1), 26–32. https://doi.org/10.1097/MOL.0000000000000262

    Article  CAS  PubMed  Google Scholar 

  125. Souza, P. R., Marques, R. M., Gomez, E. A., Colas, R. A., De Matteis, R., Zak, A., et al. (2020). Enriched marine oil supplements increase peripheral blood specialized pro-resolving mediators concentrations and reprogram host immune responses: a randomized double-blind placebo-controlled study. Circulation Research., 126(1), 75–90. https://doi.org/10.1161/CIRCRESAHA.119.315506

    Article  CAS  PubMed  Google Scholar 

  126. Norris, P. C., Arnardottir, H., Sanger, J. M., Fichtner, D., Keyes, G. S., & Serhan, C. N. (2018). Resolvin D3 multi-level proresolving actions are host protective during infection. Prostaglandins, Leukotrienes and Essential Fatty Acids., 138, 81–89. https://doi.org/10.1016/j.plefa.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  127. Spite, M., Norling, L. V., Summers, L., Yang, R., Cooper, D., Petasis, N. A., et al. (2009). Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature, 461(7268), 1287–1291. https://doi.org/10.1038/nature08541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dalli, J., Chiang, N., & Serhan, C. N. (2015). Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nature medicine., 21(9), 1071–1075. https://doi.org/10.1038/nm.3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Arnardottir, H., Pawelzik, S. C., Ohlund, W., U., Artiach, G, Hofmann, R., Reinholdsson, I., et al. (2020). Stimulating the resolution of inflammation through omega-3 polyunsaturated fatty acids in COVID-19: Rationale for the COVID-Omega-F trial. Frontiers in Physiology., 11, 624657. https://doi.org/10.3389/fphys.2020.624657

    Article  PubMed  Google Scholar 

  130. Ledford, H. (2020). Coronavirus breakthrough: Dexamethasone is first drug shown to save lives. Nature, 582(7813), 469. https://doi.org/10.1038/d41586-020-01824-5

    Article  CAS  PubMed  Google Scholar 

  131. Pyrillou, K., Chairakaki, A. D., Tamvakopoulos, C., & Andreakos, E. (2018). Dexamethasone induces omega3-derived immunoresolvents driving resolution of allergic airway inflammation. Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2018.04.004

    Article  PubMed  Google Scholar 

  132. Das, I., Png, C. W., Oancea, I., Hasnain, S. Z., Lourie, R., Proctor, M., et al. (2013). Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. Journal of Experimental Medicine., 210(6), 1201–1216. https://doi.org/10.1084/jem.20121268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Raut, A., & Huy, N. T. (2021). Rising incidence of mucormycosis in patients with COVID-19: Another challenge for India amidst the second wave? The Lancet Respiratory Medicine. https://doi.org/10.1016/S2213-2600(21)00265-4

    Article  PubMed  PubMed Central  Google Scholar 

  134. FitzGerald, G. A. (2020). Misguided drug advice for COVID-19. Science, 367(6485), 1434. https://doi.org/10.1126/science.abb8034

    Article  CAS  PubMed  Google Scholar 

  135. Serhan, C. N., Chiang, N., & Van Dyke, T. E. (2008). Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nature Reviews Immunology, 8(5), 349–361. https://doi.org/10.1038/nri2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., & Serhan, C. N. (2001). Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology., 2(7), 612–619. https://doi.org/10.1038/89759

    Article  CAS  PubMed  Google Scholar 

  137. Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N., & Gronert, K. (2000). Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. Journal of Experimental Medicine, 192(8), 1197–1204. https://doi.org/10.1084/jem.192.8.1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Serhan, C. N., Hong, S., Gronert, K., Colgan, S. P., Devchand, P. R., Mirick, G., et al. (2002). Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. Journal of Experimental Medicine, 196(8), 1025–1037. https://doi.org/10.1084/jem.20020760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry., 278(17), 14677–14687. https://doi.org/10.1074/jbc.M300218200

    Article  CAS  PubMed  Google Scholar 

  140. Yousefifard, M., Zali, A., Zarghi, A., Madani Neishaboori, A., Hosseini, M., & Safari, S. (2020). Non-steroidal anti-inflammatory drugs in management of COVID-19; A systematic review on current evidence. International Journal of Clinical Practice, 74(9), e13557. https://doi.org/10.1111/ijcp.13557

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this article. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Sharifur Rahman or Mohammad Salim Hossain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving Human Participants and/or Animals

No, this research uses the secondary data.

Informed Consent

Not applicable, this review uses the secondary data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Hossain, M.S. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00919-4

Keywords

Navigation