Skip to main content

Repurposing Anti-inflammatory Agents in the Potential Treatment of SARS-COV-2 Infection

  • Chapter
  • First Online:
Drug Repurposing for Emerging Infectious Diseases and Cancer

Abstract

SARS-Cov-2 is the novel coronavirus with predominantly inflammatory pathogenesis. The inflammation can be initiated and finally aggravated through a number of interconnected inflammatory pathways such as NF-κB, JAK-STAT, MAPK TLRs, iNOS, COX, etc. In the current chapter, these signaling pathways which instigate inflammation in SARS-Cov-2 are discussed. Moreover, drugs inhibiting these pathways in other inflammatory conditions or diseases are either in clinical use as COVID-19 therapy, or have been proposed as potential future therapeutic interventions in this chapter. These repurposing strategies can halt the COVID-19 symptoms as well as disease progression. This was demonstrated by establishing a link between the regulatory actions of these molecules or drugs in the inflammatory pathway like cytokine release against the COVID-19-related inflammatory havoc. Hence, the chapter will provide profound insights in the inflammatory control pertaining to COVID-19 severity and complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE2:

Angiotensin-converting enzyme-2

ALRs:

AIM2-like receptors

AP-1:

Activator protein-1

ASC:

Apoptosis-associated speck-like protein containing a CARD domain

BAFFR:

B-cell activation factor

CD:

Cluster of differentiation

CLRs:

C-type lectin receptors

COX:

Cyclooxygenase

COX-2:

Cyclo-oxygenase-2

DAMPS:

Damage-associated molecular patterns

DMARDs:

Disease-modifying antirheumatic drugs

ERK:

Extracellular-signal-regulated kinase

G-CSF:

Granulocyte- Colony stimulating factor

IKK:

IκB kinase

IL-1R:

Interleukin-1 receptor

iNOS:

Inducible nitric oxide synthase

IRF3:

Interferon regulatory factor 3

JAK:

Janus Kinase

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein

MIP-1α:

Macrophage inflammatory product 1 alpha

NF-κB:

Nuclear factor κ light chain enhancer of activated B cells

NIK:

NF-κB-inducing kinase

NLRs:

NOD-like receptors

NSAIDs:

Non-steroidal anti-inflammatory drugs

PAMP:

Pathogen-associated molecular pattern

PGG2:

Prostaglandin G2

PLA2:

Phospholipase-A2

PRRs:

Pattern recognition receptors

RANK:

Receptor activator for nuclear factor kappa B

RCT:

Randomized controlled trial

RLSs:

RIG-I-like receptors

ROS:

Reactive oxygen species

SARS-Cov-2:

Severe acute respiratory syndrome Coronavirus-2

STAT:

Signal Transducer and Activator Protein

TLRs:

Toll-like receptors

TNFR:

Tumor necrosis factor receptor

TXA2:

Thromboxane

References

  • Ahmed SMU, Luo L et al (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta (BBA)-Mol Basis Dis 1863(2):585–597

    Article  CAS  Google Scholar 

  • Akerstrom S, Mousavi-Jazi M et al (2005) Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 79(3):1966–1969

    Article  Google Scholar 

  • Amici C, Di Caro A et al (2006) Indomethacin has a potent antiviral activity against SARS coronavirus. Antiviral Ther 11(8):1021

    Article  CAS  Google Scholar 

  • Asano K, Chee CB et al (1994) Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells. Proc Natl Acad Sci U S A 91(21):10089–10093

    Article  CAS  Google Scholar 

  • Asiedu SO, Kwofie SK et al (2021) Computational identification of potential anti-inflammatory natural compounds targeting the p38 Mitogen-Activated Protein Kinase (MAPK): implications for COVID-19-induced cytokine storm. Biomolecules 11(5):653

    Article  CAS  Google Scholar 

  • Au ED, Desai AP et al (2016) The MEK-inhibitor selumetinib attenuates tumor growth and reduces IL-6 expression but does not protect against muscle wasting in lewis lung cancer cachexia. Front Physiol 7:682

    Google Scholar 

  • Auphan N, DiDonato JA et al (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270(5234):286–290

    Article  CAS  Google Scholar 

  • Azevedo A, Torres T (2018) Tofacitinib: A New Oral Therapy for Psoriasis. Clin Drug Investig 38(2):101–112

    Article  CAS  Google Scholar 

  • Bagca BG, Avci CB (2020) The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine Growth Factor Rev 54:51–61

    Article  Google Scholar 

  • Banerjee S, Biehl A et al (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546

    Article  CAS  Google Scholar 

  • Barbour AM, Sarov-Blat L et al (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics of losmapimod following a single intravenous or oral dose in healthy volunteers. Br J Clin Pharmacol 76(1):99–106

    Article  CAS  Google Scholar 

  • Barnes PJ (2006) How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Pharmacol 148(3):245–254

    Article  CAS  Google Scholar 

  • Barnes PJ (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138(1):16–27

    Article  CAS  Google Scholar 

  • Bhandari R, Khanna G et al (2021) Divulging the intricacies of crosstalk between NF-Kb and Nrf2-Keap1 pathway in neurological complications of COVID-19. Mol Neurobiol:1–15

    Google Scholar 

  • Bhatti FUR, Hasty KA et al (2019) Anti-inflammatory role of TPCA-1 encapsulated nanosomes in porcine chondrocytes against TNF-alpha stimulation. Inflammopharmacology 27(5):1011–1019

    Article  CAS  Google Scholar 

  • Bian J, Wang K et al (2011) Caspase- and p38-MAPK-dependent induction of apoptosis in A549 lung cancer cells by Newcastle disease virus. Arch Virol 156(8):1335–1344

    Article  CAS  Google Scholar 

  • Blum S, Martins F et al (2016) Ruxolitinib in the treatment of polycythemia vera: patient selection and special considerations. J Blood Med 7:205–215

    Article  CAS  Google Scholar 

  • Bunim JJ, Black RL et al (1958) Studies on dexamethasone, a new synthetic steroid, in rheurheumatoid arthritis: a preliminary report; adrenal cortical, metabolic and early clinical effects. Arthritis Rheum 1(4):313–331

    Article  CAS  Google Scholar 

  • Burrack KS, Morrison TE (2014) The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol 5:428

    Article  Google Scholar 

  • Carty M, Guy C et al (2021) Detection of viral infections by innate immunity. Biochem Pharmacol 183:114316

    Article  CAS  Google Scholar 

  • Chen IY, Chang SC et al (2010) Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol 84(15):7703–7712

    Article  CAS  Google Scholar 

  • Chen L, Deng H et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204

    Article  Google Scholar 

  • Christie JD, Vaslef S et al (2015) A randomized dose-escalation study of the safety and anti-inflammatory activity of the p38 mitogen-activated protein kinase inhibitor dilmapimod in severe trauma subjects at risk for acute respiratory distress syndrome. Crit Care Med 43(9):1859–1869

    Article  CAS  Google Scholar 

  • Ciprandi G, Tosca MA et al (2013) High exhaled nitric oxide levels may predict bronchial reversibility in allergic children with asthma or rhinitis. J Asthma 50(1):33–38

    Article  CAS  Google Scholar 

  • Cohen B, Preuss CV (2021) Celecoxib. StatPearls, Treasure Island, FL

    Google Scholar 

  • Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1(8):1397–1406

    Article  CAS  Google Scholar 

  • D'Amico F, Fiorino G et al (2018) Janus kinase inhibitors for the treatment of inflammatory bowel diseases: developments from phase I and phase II clinical trials. Expert Opin Investig Drugs 27(7):595–599

    Article  CAS  Google Scholar 

  • Davis KL, Martin E et al (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236

    Article  CAS  Google Scholar 

  • de Girolamo L, Peretti GM et al (2020) Covid-19-The real role of NSAIDs in Italy. J Orthop Surg Res 15(1):165

    Article  Google Scholar 

  • DeDiego ML, Nieto-Torres JL et al (2014) Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol 88(2):913–924

    Article  Google Scholar 

  • Dhillon S, Keam SJ (2020) Filgotinib: first approval. Drugs 80(18):1987–1997

    Article  CAS  Google Scholar 

  • DiDonato JA, Mercurio F et al (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246(1):379–400

    Article  Google Scholar 

  • Ding C (2006) Drug evaluation: VX-702, a MAP kinase inhibitor for rheumatoid arthritis and acute coronary syndrome. Curr Opin Investig Drugs 7(11):1020–1025

    CAS  Google Scholar 

  • Dowty ME, Lin J et al (2014) The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab Dispos 42(4):759–773

    Article  Google Scholar 

  • Enkhbaatar P, Murakami K et al (2003) The inducible nitric oxide synthase inhibitor BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury. Am J Respir Crit Care Med 167(7):1021–1026

    Article  Google Scholar 

  • Fang L, Karakiulakis G, Roth M (2020) Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Med, Lancet Respir

    Book  Google Scholar 

  • FitzGerald GA (2020) Misguided drug advice for COVID-19. Science 367(6485):1434

    Article  Google Scholar 

  • Flaherty KT, Robert C et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367(2):107–114

    Article  CAS  Google Scholar 

  • Fridman JS, Scherle PA et al (2010) Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol 184(9):5298–5307

    Article  CAS  Google Scholar 

  • Fu Y, Cheng Y et al (2020) Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica 35(3):266–271

    Article  CAS  Google Scholar 

  • Gallagher PE, Ferrario CM et al (2008) MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol 295(5):C1169–C1174

    Article  CAS  Google Scholar 

  • Gaspari V, Zengarini C et al (2020) Side effects of ruxolitinib in patients with SARS-CoV-2 infection: two case reports. Int J Antimicrob Agents 56(2):106023

    Article  CAS  Google Scholar 

  • Gaur P, Munjhal A et al (2011) Influenza virus and cell signaling pathways. Med Sci Monit 17(6):RA148–RA154

    Article  Google Scholar 

  • Genovese MC, Fleischmann R et al (2018) Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. Lancet 391(10139):2513–2524

    Article  CAS  Google Scholar 

  • Gilmore TD, Herscovitch M (2006) Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 25(51):6887–6899

    Article  CAS  Google Scholar 

  • Gimeno A, Mestres-Truyol J et al (2020) Prediction of Novel inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition. Int J Mol Sci 21(11)

    Google Scholar 

  • Giuliani C, Bucci I et al (2014) Resveratrol inhibits sodium/iodide symporter gene expression and function in rat thyroid cells. PLoS One 9(9):e107936

    Article  Google Scholar 

  • Gonzales AJ, Bowman JW et al (2014) Oclacitinib (APOQUEL((R))) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J Vet Pharmacol Ther 37(4):317–324

    Article  CAS  Google Scholar 

  • Gonzales AJ, Fleck TJ et al (2016) IL-31-induced pruritus in dogs: a novel experimental model to evaluate anti-pruritic effects of canine therapeutics. Vet Dermatol 27(1):34–e10

    Article  Google Scholar 

  • Greaves J, Chamberlain LH (2007) Palmitoylation-dependent protein sorting. J Cell Biol 176(3):249–254

    Article  CAS  Google Scholar 

  • Greten FR, Arkan MC et al (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130(5):918–931

    Article  CAS  Google Scholar 

  • Grimes JM, Grimes KV (2020) p38 MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol 144:63–65

    Article  CAS  Google Scholar 

  • Guimaraes LMF, Rossini CVT et al (2021) Implications of SARS-Cov-2 infection on eNOS and iNOS activity: consequences for the respiratory and vascular systems. Nitric Oxide 111–112:64–71

    Article  Google Scholar 

  • Guo FH, De Raeve HR et al (1995) Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci U S A 92(17):7809–7813

    Article  CAS  Google Scholar 

  • Harigai M (2019) Growing evidence of the safety of JAK inhibitors in patients with rheumatoid arthritis. Rheumatology (Oxford) 58(Suppl. 1):i34–i42

    Article  CAS  Google Scholar 

  • Hariharan A, Hakeem AR et al (2021) The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 29(1):91–100

    Article  CAS  Google Scholar 

  • Harirforoosh S, Asghar W et al (2013) Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 16(5):821–847

    Article  Google Scholar 

  • Hirano T, Murakami M (2020) COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity 52(5):731–733

    Article  CAS  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12(1):1–15

    Article  Google Scholar 

  • Hong W, Chen Y et al (2020) Celebrex adjuvant therapy on coronavirus disease 2019: an experimental study. Front Pharmacol 11:561674

    Article  CAS  Google Scholar 

  • Hsu LC, Enzler T et al (2011) IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nat Immunol 12(2):144–150

    Article  CAS  Google Scholar 

  • Jeon KI, Xu X et al (2010) Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A 107(21):9795–9800

    Article  CAS  Google Scholar 

  • Jorgensen SCJ, Tse CLY et al (2020) Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy 40(8):843–856

    Article  CAS  Google Scholar 

  • Kaddoura M, AlIbrahim M et al (2020) COVID-19 Therapeutic options under investigation. Front Pharmacol 11:1196

    Article  CAS  Google Scholar 

  • Kahn N, Meister M et al (2012) Early detection of lung cancer by molecular markers in endobronchial epithelial-lining fluid. J Thorac Oncol 7(6):1001–1008

    Article  CAS  Google Scholar 

  • Kamiyama I, Kohno M et al (2014) A new technique of bronchial microsampling and proteomic analysis of epithelial lining fluid in a rat model of acute lung injury. Mol Immunol 59(2):217–225

    Article  CAS  Google Scholar 

  • Ke YY, Peng TT et al (2020) Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed J 43(4):355–362

    Article  Google Scholar 

  • Kellner M, Noonepalle S et al (2017) ROS signaling in the pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Adv Exp Med Biol 967:105–137

    Article  CAS  Google Scholar 

  • Khanmohammadi S, Rezaei N (2021) Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol 93(5):2735–2739

    Article  CAS  Google Scholar 

  • Kiang MV, Irizarry RA et al (2020) Every body counts: measuring mortality from the COVID-19 pandemic. Ann Intern Med 173(12):1004–1007

    Article  Google Scholar 

  • Klingstrom J, Akerstrom S et al (2006) Nitric oxide and peroxynitrite have different antiviral effects against hantavirus replication and free mature virions. Eur J Immunol 36(10):2649–2657

    Article  Google Scholar 

  • Klunder B, Mohamed MF et al (2018) Population pharmacokinetics of upadacitinib in healthy subjects and subjects with rheumatoid arthritis: analyses of Phase I and II clinical trials. Clin Pharmacokinet 57(8):977–988

    Article  Google Scholar 

  • Korhonen R, Lahti A et al (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4(4):471–479

    Article  CAS  Google Scholar 

  • Kotyla PJ (2018) Are Janus kinase inhibitors superior over classic biologic agents in RA patients? Biomed Res Int 2018:7492904

    Article  Google Scholar 

  • Kumar V (2020) Toll-like receptors in sepsis-associated cytokines storm and their endogenous negative regulators as future immunomodulatory targets. Int immunopharmacol:107087

    Google Scholar 

  • Kumar R, Khandelwal N et al (2018) Role of MAPK/MNK1 signaling in virus replication. Virus Res 253:48–61

    Article  CAS  Google Scholar 

  • Lancaster LH, de Andrade JA et al (2017) Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev 26(146)

    Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  Google Scholar 

  • Lee S, Channappanavar R et al (2020) Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol

    Google Scholar 

  • Li H, Liu SM et al (2020) Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents 55(5):105951

    Article  CAS  Google Scholar 

  • Liao QJ, Ye LB et al (2005) Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus. Acta Biochim Biophys Sin (Shanghai) 37(9):607–612

    Article  CAS  Google Scholar 

  • Little P (2020) Non-steroidal anti-inflammatory drugs and covid-19. BMJ 368:m1185

    Article  Google Scholar 

  • Liu T, Zhang L et al (2017) NF-κB signaling in inflammation. Signal Transduction Target Ther 2(1):1–9

    Article  CAS  Google Scholar 

  • Luan J, Lu Y et al (2020) Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem Biophys Res Commun 526(1):165–169

    Article  CAS  Google Scholar 

  • Lund LC, Kristensen KB et al (2020) Adverse outcomes and mortality in users of non-steroidal anti-inflammatory drugs who tested positive for SARS-CoV-2: a Danish nationwide cohort study. PLoS Med 17(9):e1003308

    Article  CAS  Google Scholar 

  • MacNee W, Allan RJ et al (2013) Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax 68(8):738–745

    Article  Google Scholar 

  • Mahesh G, Kumar KA et al (2021) Overview on the discovery and development of anti-inflammatory drugs: Should the focus be on synthesis or degradation of PGE2? J Inflamm Res 14:253

    Article  Google Scholar 

  • Manes NP, Nita-Lazar A (2021) Molecular mechanisms of the Toll-like receptor, STING, MAVS, inflammasome, and interferon pathways. Msystems 6(3):e00336–e00321

    Article  CAS  Google Scholar 

  • Manik M, Singh RK (2021) Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J Med Virol

    Google Scholar 

  • Markham A, Keam SJ (2019) Peficitinib: first global approval. Drugs 79(8):887–891

    Article  CAS  Google Scholar 

  • Masiello, P., M. Novelli, et al. (2020). Can Hypericum perforatum (SJW) prevent cytokine storm in COVID-19 patients? Phytother Res.

    Google Scholar 

  • Matsuo N (1999) The role of intrapulmonary nitric oxide generation in the development of adult respiratory distress syndrome. Surg Today 29(10):1068–1074

    Article  CAS  Google Scholar 

  • Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107(3):247–254

    Article  CAS  Google Scholar 

  • McIntosh, K. (2021). COVID-19: Epidemiology, virology, and prevention. UpToDate. Available online: https://www.uptodate.com/contents/covid-19-epidemiology-virology-and-prevention (accessed on 18 March 2021).

  • Mitchell JA, Kirkby NS (2019) Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 176(8):1038–1050

    Article  CAS  Google Scholar 

  • Mizutani T, Fukushi S et al (2004) Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochem Biophys Res Commun 319(4):1228–1234

    Article  CAS  Google Scholar 

  • Mohamed MF, Camp HS et al (2016) Pharmacokinetics, safety and tolerability of ABT-494, a Novel selective JAK 1 inhibitor, in healthy volunteers and subjects with rheumatoid arthritis. Clin Pharmacokinet 55(12):1547–1558

    Article  CAS  Google Scholar 

  • Mohan S, Gupta D (2018) Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother 108:1866–1878

    Article  CAS  Google Scholar 

  • Mohanta TK, Sharma N et al (2020, 2020) Molecular insights into the MAPK cascade during viral infection: potential crosstalk between HCQ and HCQ analogues. BioMed Res Int

    Google Scholar 

  • Montero P, Milara J et al (2021) Role of JAK/STAT in interstitial lung diseases: molecular and cellular mechanisms. Int J Mol Sci 22(12):6211

    Article  CAS  Google Scholar 

  • Nakayamada S, Kubo S et al (2016) Recent progress in JAK inhibitors for the treatment of rheumatoid arthritis. BioDrugs 30(5):407–419

    Article  CAS  Google Scholar 

  • Namour F, Diderichsen PM et al (2015) Pharmacokinetics and pharmacokinetic/pharmacodynamic modeling of Filgotinib (GLPG0634), a selective JAK1 inhibitor, in support of phase IIB dose selection. Clin Pharmacokinet 54(8):859–874

    Article  CAS  Google Scholar 

  • Namour F, Desrivot J et al (2016) Clinical confirmation that the selective JAK1 inhibitor filgotinib (GLPG0634) has a low liability for drug-drug interactions. Drug Metab Lett 10(1):38–48

    Article  CAS  Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034

    Article  Google Scholar 

  • Organization W H (2020). The use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with COVID-19.

    Google Scholar 

  • O'Shea JJ, Schwartz DM et al (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328

    Article  CAS  Google Scholar 

  • Pardanani A, Laborde RR et al (2013) Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 27(6):1322–1327

    Article  CAS  Google Scholar 

  • Pardanani A, Harrison C et al (2015) Safety and efficacy of Fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol 1(5):643–651

    Article  Google Scholar 

  • Platnich JM, Muruve DA (2019) NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys 670:4–14

    Article  CAS  Google Scholar 

  • Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am 42(1):15–31. vii

    Article  Google Scholar 

  • Rehberg S, Maybauer MO et al (2010) The role of nitric oxide and reactive nitrogen species in experimental ARDS. Front Biosci (School Ed) 2:18–29

    Article  Google Scholar 

  • Ren Z, Wang L et al (2013) Resveratrol inhibits NF-κB signaling through suppression of p65 and IB kinase activities. Die Pharmazie-Int J Pharm Sci 68(8):689–694

    CAS  Google Scholar 

  • Renouf DJ, Velazquez-Martin JP et al (2012) Ocular toxicity of targeted therapies. J Clin Oncol 30(26):3277–3286

    Article  CAS  Google Scholar 

  • Ripon MAR, Bhowmick DR et al (2021) Role of Arachidonic cascade in COVID-19 infection: a review. Prostagland Other Lipid Mediators 106539

    Google Scholar 

  • Russell B, Moss C et al (2020) COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting? Ecancermedical science 14:1023

    Google Scholar 

  • Santoro MG, Rossi A et al (2003) NF-kappaB and virus infection: who controls whom. EMBO J 22(11):2552–2560

    Article  CAS  Google Scholar 

  • Sarawar SR, Doherty PC (1994) Concurrent production of interleukin-2, interleukin-10, and gamma interferon in the regional lymph nodes of mice with influenza pneumonia. J Virol 68(5):3112–3119

    Article  CAS  Google Scholar 

  • Satarker S, Tom AA et al (2021) JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgraduate Med 133(5):489–507

    Article  CAS  Google Scholar 

  • Saxena SK, Mathur A et al (2001) Induction of nitric oxide synthase during Japanese encephalitis virus infection: evidence of protective role. Arch Biochem Biophys 391(1):1–7

    Article  CAS  Google Scholar 

  • Scheinman RI, Cogswell PC et al (1995) Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270(5234):283–286

    Article  CAS  Google Scholar 

  • Schumacher HR Jr, Boice JA et al (2002) Randomised double blind trial of etoricoxib and indometacin in treatment of acute gouty arthritis. BMJ 324(7352):1488–1492

    Article  CAS  Google Scholar 

  • Sestili P, Stocchi V (2020) Repositioning Chromones for Early Anti-inflammatory Treatment of COVID-19. Front Pharmacol 11:854

    Article  CAS  Google Scholar 

  • Sibbald B (2004) Rofecoxib (Vioxx) voluntarily withdrawn from market. CMAJ 171(9):1027–1028

    Article  Google Scholar 

  • Silverstein FE, Faich G et al (2000) Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib long-term arthritis safety study. JAMA 284(10):1247–1255

    Article  CAS  Google Scholar 

  • Singer JW, Al-Fayoumi S et al (2016) Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol 8:11–19

    Article  CAS  Google Scholar 

  • Sittipunt C, Steinberg KP et al (2001) Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163(2):503–510

    Article  CAS  Google Scholar 

  • Smeitink, J., X. Jiang, et al. (2020). Hypothesis: mPGES-1-derived prostaglandin E2, a so far missing link in COVID-19 pathophysiology?.

    Google Scholar 

  • Smith JA, Stallons LJ et al (2015) Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury. J Pharmacol Exp Ther 352(2):346–357

    Article  Google Scholar 

  • Smith JA, Mayeux PR et al (2016) Delayed mitogen-activated protein kinase/extracellular signal-regulated kinase inhibition by trametinib attenuates systemic inflammatory responses and multiple organ injury in murine sepsis. Crit Care Med 44(8):e711–e720

    Article  CAS  Google Scholar 

  • Soares-Silva M, Diniz FF et al (2016) The mitogen-activated protein kinase (MAPK) pathway: role in immune evasion by trypanosomatids. Front Microbiol 7:183

    Article  Google Scholar 

  • Solt LA, May MJ (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42(1-3):3–18

    Article  CAS  Google Scholar 

  • Stamler JS, Toone EJ et al (1997) (S) NO signals: translocation, regulation, and a consensus motif. Neuron 18(5):691–696

    Article  CAS  Google Scholar 

  • Takeuchi T, Tanaka Y et al (2016) Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann Rheum Dis 75(6):1057–1064

    Article  CAS  Google Scholar 

  • Talukdar J, Bhadra B et al (2020) Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother 110886

    Google Scholar 

  • Tang K, Shao X et al (2017) Correlation between nitric oxide content in exhaled breath condensate and the severity of acute respiratory distress syndrome. Int J Clin Exp Pathol 10(7):7350–7355

    Google Scholar 

  • Taylor PC, Abdul Azeez M et al (2017) Filgotinib for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 26(10):1181–1187

    Article  CAS  Google Scholar 

  • Tefferi A (2016) Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol 91(12):1262–1271

    Article  CAS  Google Scholar 

  • Tefferi A, Barraco D et al (2018) Momelotinib therapy for myelofibrosis: a 7-year follow-up. Blood Cancer J 8(3):29

    Article  Google Scholar 

  • Tomazini BM, Maia IS et al (2020) Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. JAMA 324(13):1307–1316

    Article  CAS  Google Scholar 

  • van der Vliet A, Eiserich JP et al (1999) Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? Am J Respir Crit Care Med 160(1):1–9

    Article  Google Scholar 

  • Voiriot G, Philippot Q et al (2019) Risks related to the use of non-steroidal anti-inflammatory drugs in community-acquired pneumonia in adult and pediatric patients. J Clin Med 8(6):786

    Article  CAS  Google Scholar 

  • Wallet F, Delannoy B et al (2013) Evaluation of recruited lung volume at inspiratory plateau pressure with PEEP using bedside digital chest X-ray in patients with acute lung injury/ARDS. Respir Care 58(3):416–423

    Article  Google Scholar 

  • Westphal M, Enkhbaatar P et al (2008) Neuronal nitric oxide synthase inhibition attenuates cardiopulmonary dysfunctions after combined burn and smoke inhalation injury in sheep. Crit Care Med 36(4):1196–1204

    Article  CAS  Google Scholar 

  • Willsher K (2020) Anti-inflammatories may aggravate Covid-19, France advises. The Guardian 15

    Google Scholar 

  • Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107(2):135–142

    Article  CAS  Google Scholar 

  • Yang J, Zhang E et al (2020) Longitudinal characteristics of T cell responses in asymptomatic SARS-CoV-2 infection. Virol Sinica 35(6):838–841

    Article  CAS  Google Scholar 

  • Zamora R, Vodovotz Y et al (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6(5):347–373

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Y et al (2020) Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol 86:106749

    Article  CAS  Google Scholar 

  • Zhao N, Di B et al (2021) The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev

    Google Scholar 

  • Zhou T, Georgeon S et al (2014) Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). Leukemia 28(2):404–407

    Article  CAS  Google Scholar 

  • Zhou L, Huntington K et al (2020) MEK inhibitors reduce cellular expression of ACE2, pERK, pRb while stimulating NK-mediated cytotoxicity and attenuating inflammatory cytokines relevant to SARS-CoV-2 infection. Oncotarget 11(46):4201–4223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhtar, A., Kaur, J., Chiu, M.N., Sah, S.P. (2023). Repurposing Anti-inflammatory Agents in the Potential Treatment of SARS-COV-2 Infection. In: Sobti, R.C., Lal, S.K., Goyal, R.K. (eds) Drug Repurposing for Emerging Infectious Diseases and Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-5399-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5399-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5398-9

  • Online ISBN: 978-981-19-5399-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics