Skip to main content
Log in

An Overview of Molecular Basis and Genetic Modification of Floral Organs Genes: Impact of Next-Generation Sequencing

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In plant development, flowering is the most widely studied process. Floral forms show large diversity in different species due to simple variations in basic architecture. To determine the floral gene expression during the past decade, MADS-box genes have identified as key regulators in both reproductive and vegetative plant development. Traditional genetics and functional genomics tools are now available to elucidate the expression and function of this complex gene family on a much larger scale. Moreover, comparative analysis of the MADS-box genes in diverse flowering and non-flowering plants, boosted by various molecular technologies such as ChIP and next-generation DNA sequencing, contributes to our understanding of how this important gene family has expanded during the evolution of land plants. Likewise, the big data analysis revealed combined activity of transcriptional regulators and floral organ identity factors regulate the flower developmental programs. Thus, with the help of cutting-edge technologies like RNA-Sequencing, sex determination is now better understood in few non-model plants Therefore, the recent advances in next-generation sequencing (NGS) should enable researchers to identify the full range of floral gene functions, which will significantly help to understand plant development and evolution. This review summarizes the floral homeotic genes in model and non-model species to understand the flower development genes and dioecy evolution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akagi, T., Henry, I. M., Tao, R., & Comai, L. (2014). A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science, 346, 646–650.

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Buylla, E. R., Azpeitia, E., Barrio, R., Benítez, M., & Padilla-Longoria, P. (2010). From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: Making biological sense of theoretical approaches. Seminars in Cell and Developmental Biology, 21, 108–117.

    Article  CAS  PubMed  Google Scholar 

  3. Amasino, R. (2010). Seasonal and developmental timing of flowering. Plant Journal, 61, 1001–1013.

    Article  CAS  Google Scholar 

  4. Ambrose, B. A., Espinosa-Matías, S., Vázquez-Santana, S., VergaraSilva, F., Martínez, E., Márquez-Guzmán, J., & Alvarez-Buylla, E. R. (2006). Comparative developmental series of the Mexican triurids support a euanthial interpretation for the unusual reproductive axes of Lacandonia schismatica (Triuridaceae). American Journal of Botany, 93, 15–35.

    Article  Google Scholar 

  5. Angenent, G. C., & Colombo, L. (1996). Molecular control of ovule development. Trends in Plant Science, 1, 228–232.

    Article  Google Scholar 

  6. Avramova, V., AbdElgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., & Beemster, G. T. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169, 1382–1396.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Badicean, D., Scholten, S., & Jacota, A. (2011). Transcriptional profiling of Zea mays genotypes with different drought tolerances—New perspectives for gene expression markers selection. Maydica, 56, 17–24.

    Google Scholar 

  8. Barrio, R. A., Hernández-Machado, A., Varea, C., Romero-Arias, J. R., & Álvarez-Buylla, E. (2010). Flower development as an interplay between dynamical physical fields and genetic networks. PLoS ONE, 5(10), 1–9.

    Article  Google Scholar 

  9. Blázquez, M., & Weigel, D. (2000). Integration of floral inductive signals in Arabidopsis. Nature, 404, 889–892.

    Article  PubMed  Google Scholar 

  10. Bemis, S. M., Lee, J. S., Shpak, E. D., & Torii, K. U. (2013). Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes. Journal of Experimental Botany, 64, 5323–5333.

    Article  CAS  PubMed  Google Scholar 

  11. Bergero, R., & Charlesworth, D. (2011). Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Current Biology, 21, 1470–1474.

    Article  CAS  PubMed  Google Scholar 

  12. Bossinger, G., & Smyth, D. R. (1996). Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development, 122, 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  13. Boualem, A., Fergany, M., Fernandez, R., Troadec, C., Martin, A., Morin, H., et al. (2008). A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science, 321, 836–838.

    Article  CAS  PubMed  Google Scholar 

  14. Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 1–20.

    Article  CAS  PubMed  Google Scholar 

  15. Bowman, J. L., & Smyth, D. R. (1999). CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix–loop–helix domains. Development, 126, 2387–2396.

    Article  CAS  PubMed  Google Scholar 

  16. Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (2012). The ABC model of flower development: Then and now. Development, 139, 4095–4098.

    Article  CAS  PubMed  Google Scholar 

  17. Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 72, 85–95.

    Article  CAS  PubMed  Google Scholar 

  18. Carvalho, A. B., Dobo, B. A., Vibranovski, M. D., & Clark, A. G. (2001). Identification of five new genes on the Y chromosome of Drosophila melanogaster. Proceedings of the National Academy of Sciences of USA, 98, 13225–13230.

    Article  CAS  Google Scholar 

  19. Causier, B., Schwarz-Sommer, Z., & Davies, B. (2010). Floral organ identity: 20 Years of ABCs. Seminars in Cell and Developmental Biology, 21, 73–79.

    Article  CAS  PubMed  Google Scholar 

  20. Cegan, R., Marais, G. A., Kubekova, H., Blavet, N., Widmer, A., Vyskot, B., et al. (2010). Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biology, 10, 180.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Charlesworth, B., & Charlesworth, D. (1978). A model for the evolution of dioecy and gynodioecy. American Naturalist, 112, 975–997.

    Article  Google Scholar 

  22. Cheng, P. C., Greyson, R. I., & Walden, D. B. (1983). Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. American Journal of Botany, 70, 450–462.

    Article  Google Scholar 

  23. Coen, E., & Meyerowitz, E (1991). The war of the whorls: Genetic interactions controlling flower development. Nature, 353, 31–37. https://doi.org/10.1038/353031a0

    Article  CAS  PubMed  Google Scholar 

  24. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316, 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  25. Danilevskaya, O. N., Yu, G. X., Meng, X., Xu, J., Stephenson, E., Estrada, S., Chilakamarri, S., Zastrow-Hayes, G., & Thatcher, S. (2019). Developmental and transcriptional responses of maize to drought stress under field conditions. Plant Direct, 3(5), 1–20.

    Article  Google Scholar 

  26. Davila-Velderrain, J., Servin-Marquez, A., & Alvarez-Buylla, E. R. (2014). Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes. Molecular Biology and Evolution, 31, 560–573.

    Article  CAS  PubMed  Google Scholar 

  27. De Bodt, S., et al. (2003). Genome wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. Journal of Molecular Evolution, 56, 573–586.

    Article  PubMed  Google Scholar 

  28. deFolter, S., & Angenent, G. C. (2006). Trans meets cis in MADS science. Trends in Plant Science, 11, 224–231.

    Article  CAS  Google Scholar 

  29. Deyholos, M. K., & Sieburth, L. E. (2000). Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. The Plant Cell, 12, 1799–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., & Yanofsky, M. F. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 14, 1935–1940.

    Article  CAS  PubMed  Google Scholar 

  31. Drinnan, A. N., Crane, P. R., & Hoot, S. B. (1994). Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). In P. K. Endress & E. M. Friis (Eds.), Early evolution of flowers (pp. 93–122). Springer.

    Chapter  Google Scholar 

  32. Engelhorn, J., Moreau, F., Fletcher, J. C., & Carles, C. C. (2014). ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem. Annals of Botany, 114, 1497–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Espinosa-Soto, C., Immink, R. G. H., Angenent, G. C., Alvarez-Buylla, E. R., & de Folter, S. (2014). Tetramer formation in Arabidopsis MADS domain proteins: Analysis of a protein–protein interaction network. BMC Systems Biology, 1, 9.

    Article  Google Scholar 

  34. Farnham, P. J. (2009). Insights from genomic profiling of transcription factors. Nature Reviews Genetics, 10, 605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Filatov, D. A., & Charlesworth, D. (2002). Substitution rates in the X- and Y-linked genes of the plants, Silene latifolia and S. dioica. Molecular Biology and Evolution, 19, 898–907.

    Article  CAS  PubMed  Google Scholar 

  36. Francis, K. E., Lam, S. Y., & Copenhaver, G. P. (2006). Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiology, 142, 1004–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Franks, R. G., Wang, C., Levin, J. Z., & Liu, Z. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development, 129, 253–263.

    Article  CAS  PubMed  Google Scholar 

  38. Gomez-Mena, C., de Folter, S., Costa, M. M., Angenent, G. C., & Sablowski, R. (2005). Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132, 429–438.

    Article  CAS  PubMed  Google Scholar 

  39. Gomez-Mena, C., Pineiro, M., Franco-Zorrilla, J. M., Salinas, J., Coupland, G., & Martınez-Zapater, J. M. (2001). Early bolting in short days: An Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy. The Plant Cell, 13, 1011–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E. M., & Coupland, G. (1997). A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature, 386, 44–48.

    Article  CAS  PubMed  Google Scholar 

  41. Gookin, T. E., Hunter, D. A., & Reid, M. S. (2003). Temporal analysis of alpha and beta-expansin expression during floral opening and senescence. Plant Science, 164, 769–781.

    Article  CAS  Google Scholar 

  42. Goto K, Meyerowitz EM. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 1994 Jul 1;8(13):1548-60. https://doi.org/10.1101/gad.8.13.1548. PMID: 7958839.

    Article  CAS  Google Scholar 

  43. Grabowska-Joachimiak, A., Kula, A., Książczyk, T., Chojnicka, J., Sliwinska, E., & Joachimiak, A. J. (2015). Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Research, 23, 187–197.

    Article  CAS  PubMed  Google Scholar 

  44. Gramzow, L., & Theissen, G. (2010). A hitchhiker’s guide to the MADS world of plants. Genome Biology, 11, 214.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guo, S., Zheng, Y., Joung, J. G., Liu, S., Zhang, Z., Crasta, O. R., et al. (2010). Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics, 11, 384.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gupta, V., Estrada, A. D., Blakley, I., Rei, R., Patel, K., Meyer, M. D., Andersen, S. U., Brown, A. F., Lila, M. A., & Loraine, A. E. (2015). RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. GigaScience, 4, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gustafson-Brown, C., Savidge, B., & Yanofsky, M. F. (1994). Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell, 76, 131–143.

    Article  CAS  PubMed  Google Scholar 

  48. Harkess, A., & Leebens-Mack, J. (2017). A century of sex determination in flowering plants. Journal of Heredity, 108(1), 69–77.

    Article  CAS  PubMed  Google Scholar 

  49. Harkess, A., Mercati, F., Shan, H. Y., Sunseri, F., Falavigna, A., & Leebens-Mack, J. (2015). Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis). New Phytologist, 207, 883–892.

    Article  CAS  PubMed  Google Scholar 

  50. He, W., Chen, Y., Gao, M., Zhao, Y., Xu, Z., Cao, P., Zhang, Q., Jiao, Y., Li, H., Wu, L., & Wang, Y. (2018). Transcriptome analysis of Litsea cubeba floral buds reveals the role of hormones and transcription factors in the differentiation process. Genes, Genomes and Genetics, 8(4), 1103–1114.

    CAS  Google Scholar 

  51. Hennig, L., Gruissem, W., Grossniklaus, U., & Kohler, C. (2004). Transcriptional €programs of early reproductive stages in Arabidopsis. Plant Physiology, 135, 1765–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hervieux, N., Dumond, M., Sapala, A., Routier-Kierzkowska, A. L., Kierzkowski, D., Roeder, A. H., Smith, R. S., Boudaoud, A., & Hamant, O. (2016). A mechanical feedback restricts sepal growth and shape in Arabidopsis. Current Biology, 26, 1019–1028.

    Article  CAS  Google Scholar 

  53. Honma, T., & Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525–529.

    Article  CAS  PubMed  Google Scholar 

  54. Hou, X., Guo, Q., Wei, W., Guo, L., Guo, D., & Zhang, L. (2018). Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR. Molecules, 23, 689.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huijser, P., Klein, J., Linnig, W.-E., Meijer, H., Saedler, H., & Sommer, H. (1992). Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS box gene squamosa in Antirrhinum majus. EMBO Journal, 11, 1239–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hurtado, L., Farrona, S., & Reyes, J. C. (2006). The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Molecular Biology, 62, 291–304.

    Article  CAS  PubMed  Google Scholar 

  57. Immink, R. G., Kaufmann, K., & Angenent, G. C. (2010). The ‘ABC’ of MADS domain protein behaviour and interactions. Seminars in Cell and Developmental Biology, 21, 87–93.

    Article  CAS  PubMed  Google Scholar 

  58. Ito, T., Wellmer, F., Yu, H., Das, P., Ito, N., Alves-Ferreira, M., Riechmann, J. L., & Meyerowitz, E. M. (2004). The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 430, 356–360.

    Article  CAS  PubMed  Google Scholar 

  59. Jack, T., Brockman, L. L., & Meyerowitz, E. M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683–697.

    Article  CAS  PubMed  Google Scholar 

  60. Jenik, P. D., & Irish, V. (2000). Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development, 127, 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  61. Jiao, Y., & Meyerowitz, E. M. (2010). Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Molecular Systems Biology, 6, 419.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994 Sep;6(9):1211-25. https://doi.org/10.1105/tpc.6.9.1211. PMID: 7919989; PMCID: PMC160514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaiser, P., Flick, K., Wittenberg, C., & Reed, S. I. (2000). Regulation of transcription by ubiquitination without proteolysis: Cdc34/encodes SCFMet30-mediated inactivation of the transcription factor Met4. Cell, 102, 303–314.

    Article  CAS  PubMed  Google Scholar 

  64. Kaufmann, K., Muino, J. M., Jauregui, R., Airoldi, C. A., Smaczniak, C., Krajewski, P., & Angenent, G. C. (2009). Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology. https://doi.org/10.1371/journal.pbio.1000090

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaufmann, K., Wellmer, F., Muino, J. M., et al. (2010). Orchestration of floral initiation by APETALA1. Science, 328, 85–89.

    Article  CAS  PubMed  Google Scholar 

  66. Kim, S., Koh, J., Yoo, M. J., Kong, H., Hu, Y., Ma, H., Soltis, P. S., & Soltis, D. E. (2005). Expression of floral MADS-box genes in basal angiosperms: Implications for the evolution of floral regulators. Plant Journal, 43, 724–744.

    Article  CAS  Google Scholar 

  67. Koornneef, M., Hanhart, C. J., & van der Veen, J. H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics, 229, 57–66.

    Article  CAS  PubMed  Google Scholar 

  68. Krizek, B. A., & Meyerowitz, E. M. (1996). The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 122, 11–22.

    Article  CAS  PubMed  Google Scholar 

  69. Laitinen, R. A., Immanen, J., Auvinen, P., Rudd, S., Alatalo, E., Paulin, L., Ainasoja, M., Kotilainen, M., Koskela, S., Teeri, T. H., & Elomaa, P. (2005). Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Research, 15, 475–486.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lampugnani, E. R., Kilinc, A., & Smyth, D. R. (2013). Auxin controls petal initiation in Arabidopsis. Development, 140, 185–194.

    Article  CAS  PubMed  Google Scholar 

  71. Lee, I., Wolfe, D. S., Nilsson, O., & Weigel, D. (1997). A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Current Biology, 7, 95–104.

    Article  PubMed  Google Scholar 

  72. Liu, C., Xi, W., Shen, L., Tan, C., & Yu, H. (2009). Regulation of floral patterning by flowering time genes. Developmental Cell, 16, 711–722.

    Article  CAS  PubMed  Google Scholar 

  73. Liu, R., Loraine, A. E., & Dickerson, J. A. (2014). Comparisons of computational methods for differential alternative splicing detection using RNA-Seq in plant systems. BMC Bioinformatics, 15, 364.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liu, X., Huang, J., Parameswaran, S., Ito, T., Seubert, B., Auer, M., Rymaszewski, A., Jia, G., Owen, H. A., & Zhao, D. (2009). The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. Plant Physiology, 151, 1401–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lohmann, J. U., & Weigel, D. (2002). Building beauty: The genetic control of floral patterning. Developmental Cell, 2, 135–142.

    Article  CAS  PubMed  Google Scholar 

  76. Lukaszewski, T., & Reid, M. S. (1989). Bulb-type flower senescence. Acta Horticulturae, 261, 59–62.

    Article  Google Scholar 

  77. Ma, H., Yanofsky, M. F., & Meyerowitz, E. M. (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor gene. Genes and Development, 5, 484–495.

    Article  CAS  PubMed  Google Scholar 

  78. Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., & Cameron, R. K. (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 419, 399–403.

    Article  CAS  PubMed  Google Scholar 

  79. Mandel, M. A., Gustafson-Brown, C., Savidge, B., & Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360, 273–277.

    Article  CAS  PubMed  Google Scholar 

  80. Mayer, K. F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., & Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95, 805–815.

    Article  CAS  PubMed  Google Scholar 

  81. Muyle, A., Zemp, N., Deschamps, C., Mousset, S., Widmer, A., & Marais, G. A. (2012). Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biology, 10(4), 1–8.

    Article  Google Scholar 

  82. Ng, M., & Yanofsky, M. F. (2001). Activation of the Arabidopsis B class homeotic genes by APETALA1. The Plant Cell, 13, 739–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ng, M., & Yanofsky, M. F. (2001). Function and evolution of the plant MADS-box gene family. Nature Reviews Genetics, 2, 186–195.

    Article  CAS  PubMed  Google Scholar 

  84. Okamuro, J. K., Caster, B., Villarriol, R., van Montagu, M., & Jofuku, K. D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of USA, 94, 7076–7081.

    Article  CAS  Google Scholar 

  85. O’Maoileidigh, D. S., Graciet, E., & Wellmer, F. (2014). Gene networks controlling Arabidopsis thaliana flower development. New Phytologist, 201, 16–30.

    Article  PubMed  Google Scholar 

  86. O’Maoileidigh, D. S., Wuest, S. E., Rae, L., et al. (2013). Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. The Plant Cell, 25, 2482–2503.

    Article  PubMed Central  Google Scholar 

  87. Pankievicz, V., Camilios-Neto, D., Bonato, P., Balsanelli, E., Tadra-Sfeir, M., Faoro, H., et al. (2016). RNA-Seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots. Plant and Molecular Biology, 90, 589–603.

    Article  CAS  Google Scholar 

  88. Parcy, F., Nilsson, O., Busch, M. A., Lee, I., & Weigel, D. (1998). A genetic framework for floral patterning. Nature, 395, 561–566.

    Article  CAS  PubMed  Google Scholar 

  89. Patil, R. V., & Pawar, K. D. (2019). Comparative de novo flower transcriptome analysis of polygamodioecious tree Garcinia indica. 3 Biotech, 9, 72.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., & Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200–203.

    Article  CAS  PubMed  Google Scholar 

  91. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. https://doi.org/10.1371/journal.pone.0037135

    Article  PubMed  PubMed Central  Google Scholar 

  92. Poethig, R. S. (2003). Phase change and the regulation of developmental timing in plants. Science, 301, 334–336.

    Article  CAS  PubMed  Google Scholar 

  93. Reid, M. S. (2005). Flower development: From bud to bloom. Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2005.669.12

    Article  Google Scholar 

  94. Renau-Morata, B., Nebauer, S., García-Carpintero, V., Canizares, J., Minguet, E., de los Mozos M, & Molina R. (2021). Flower induction and development in saffron: Timing and hormone signalling pathways. Industrial Crops and Products, 164, 113370.

    Article  CAS  Google Scholar 

  95. Renner, S. S. (2016). Pathways for making unisexual flowers and unisexual plants: Moving beyond the ‘two mutations linked on one chromosome’ model. American Journal of Botany, 103, 587–589.

    Article  CAS  PubMed  Google Scholar 

  96. Renner, T., Bragg, J., Driscoll, H. E., Cho, J., Jackson, A. O., & Specht, C. D. (2009). Virus induced gene silencing in the culinary ginger (Zingiber of cinale): An effective mechanism for down-regulating gene expression in tropical monocots. Molecular Plant, 2, 1084–1094.

    Article  CAS  PubMed  Google Scholar 

  97. Riechmann, J. L., & Meyerowitz, E. M. (1997). MADS domain proteins in plant development. Biological Chemistry, 378, 1079–1101.

    CAS  PubMed  Google Scholar 

  98. Riechmann, J. L., Krizek, B. A., & Meyerowitz, E. M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of USA, 93, 4793–4798.

    Article  CAS  Google Scholar 

  99. Riechmann, J. L., & Meyerowitz, E. M. (1997). Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell, 8, 1243–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Riechmann, J. L., Wang, M., & Meyerowitz, E. M. (1996). DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research, 24, 3134–3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Robles, P., & Pelaz, S. (2005). Flower and fruit development in Arabidopsis thaliana. International Journal of Developmental Biology, 49, 633–643.

    Article  CAS  PubMed  Google Scholar 

  102. Ronnsley, S. D., Ditta, G. S., & Yanofsky, M. F. (1995). Diverse roles for MADS box genes in Arabidopsis development. The Plant Cell, 7, 1259–1269.

    Google Scholar 

  103. Rowan, B. A., Weigel, D., & Koenig, D. (2011). Developmental genetics and new sequencing technologies: The rise of nonmodel organisms. Developmental Cell, 21, 65–76.

    Article  CAS  PubMed  Google Scholar 

  104. Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 96, 11664–11669.

    Article  CAS  Google Scholar 

  105. Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P. J., Hansen, R., Tetens, F., Lönnig, W.-E., Saedler, H., & Sommer, H. (1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO Journal, 11, 251–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Scutt, C. P., & Vandanbussche, N. (2014). Current trends and future directions in flower development research. Annals of Botany, 114, 1399–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sgamma, T., Jackson, A., Muleo, R., Thomas, B., & Massiah, A. (2014). TEMPRANILLO is a regulator of juvenility in plants. Scientific Reports, 4, 3704.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sharma, R., Agarwal, P., Ray, S., Deveshwar, P., Sharma, P., Sharma, N., Nijhawan, A., Jain, M., Singh, A. K., Singh, V. P., Khurana, J. P., Tyagi, A. K., & Kapoor, S. (2012). Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Functional and Integrative Genomics, 12, 229–248.

    Article  CAS  PubMed  Google Scholar 

  109. Sikora, P., Chawade, A., Larsson, M., Olsson, J., & Olsson, O. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics. https://doi.org/10.1155/2011/314829

    Article  PubMed  Google Scholar 

  110. Singh, V. K., Garg, R., & Jain, M. (2013). A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotechnology Journal, 11, 691–701.

    Article  CAS  PubMed  Google Scholar 

  111. Siriwardana, N. S., & Lamb, R. S. (2012). The poetry of reproduction: The role of LEAFY in Arabidopsis thaliana flower formation. International Journal of Developmental Biology, 56, 207–221.

    Article  CAS  PubMed  Google Scholar 

  112. Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P. J., Cordum, H. S., Hillier, L., Brown, L. G., et al. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 423, 825–837.

    Article  CAS  PubMed  Google Scholar 

  113. Smaczniak, C., Immink, R. G., Muino, J. M., et al. (2012). Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proceedings of the National Academy of Sciences of USA, 109, 1560–1565.

    Article  CAS  Google Scholar 

  114. Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. The Plant Cell, 2, 755–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Soltis, D.E.; Chanderbali, A.S.; Kim, S.; Buzgo, M.; Soltis, P.S. The ABC model and its applicability to basal angiosperms. Ann. Bot. 100, 155–163

    Article  Google Scholar 

  116. Sridhar, V. V., Surendrarao, A., & Liu, Z. (2006). APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development, 133, 3159–3166.

    Article  CAS  PubMed  Google Scholar 

  117. Thei Ben, G. (2001). Development of floral organ identity: Stories from the MADS house. Current Opinion in Plant Biology, 4, 75–85.

    Article  Google Scholar 

  118. Thei Ben, G., & Saedler, H. (2001). Plant biology. Floral quartets. Nature, 409, 469–471.

    Article  Google Scholar 

  119. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Munster, T., Winter, K. U., & Saedler H. (2000). A short history of MADS box genes in plants. Plant and Molecular Biology, 42, 115–149.

    Article  CAS  Google Scholar 

  120. Theissen, G., Becker, A., Winter, K. U., Muenster, T., Kirchner, C., & Saedler, H. (2002). How the land plants learned their floral ABCs: The role of MADS box genes in the evolutionary origin of flowers. In Q. C. Cronk, R. M. Bateman, & J. M. Hawkins (Eds.), Developmental genetics and plant evolution (pp. 173–206). Taylor & Francis.

    Google Scholar 

  121. Theissen, G., & Melzer, R. (2007). Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annals of Botany, 100, 603–619.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Thomson, B., Zheng, B., & Wellmer, F. (2017). Floral organogenesis: When knowing your ABCs is not enough. Plant Physiology, 173, 56–64.

    Article  CAS  PubMed  Google Scholar 

  123. Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.-E., Saedler, H., Sornrner, H., & SchwarzSornmer, Z. (1992). GLOBOSA: A homeotic gene which interacts with deficiens in the control of Antirrhinum floral organogenesis. EMBO Journal, 11, 4693–4704.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tucker, S. C. (2003). Floral development in legumes. Plant Physiology, 131, 911–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wagner, D., Sablowski, R. W., & Meyerowitz, E. M. (1999). Transcriptional activation of APETALA1 by LEAFY. Science, 285, 582–584.

    Article  CAS  PubMed  Google Scholar 

  126. Wang, Z., Fang, B., Chen, J., Zhang, X., Luo, Z., et al. (2010). De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics, 11, 726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J. L., & Meyerowitz, E. M. (2006). Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genetics, 2(7), 1012–1024.

    Article  CAS  Google Scholar 

  128. Wellmer, F., Riechmann, J. L., Alves-Ferreira, M., & Meyerowitz, E. M. (2004). Genome-wide analysis of spatial gene expression in Arabidopsis flowers. The Plant Cell, 16, 1314–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Whipple, C. J., Ciceri, P., Padilla, C. M., Ambrose, B. A., Bandong, S. L., & Schmidt, R. J. (2004). Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 131, 6083–6091.

    Article  CAS  PubMed  Google Scholar 

  130. Winter, C. M., Austin, R. S., Blanvillain-Baufume, S., Reback, M. A., Monniaux, M., Wu, M. F., Sang, Y., Yamaguchi, A., Yamaguchi, N., Parker, J. E., et al. (2011). LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Developmental Cell, 20, 430–443.

    Article  CAS  PubMed  Google Scholar 

  131. Wollmann, H., Mica, E., Todesco, M., Long, J. A., & Weigel, D. (2010). On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development, 137, 3633–3642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu, Z., Huang, L., Huang, F., Lu, G., Wei, S., Liu, C., Deng, H., & Liang, G. (2022). Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya. Electronic Journal of Biotechnology, 58, 55–69.

    Article  CAS  Google Scholar 

  133. Wuest, S. E., O’Maoileidigh, D. S., Rae, L., Kwasniewska, K., Raganelli, A., Hanczaryk, K., Lohan, A. J., Loftus, B., Graciet, E., & Wellmer, F. (2012). Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proceedings of the National Academy of Sciences of USA, 109, 13452–13457.

    Article  CAS  Google Scholar 

  134. Xie, D. Y., Sharma, S. B., Paiva, N. L., Ferreira, D., & Dixon, R. A. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 299, 96–99.

    Article  Google Scholar 

  135. Xie, W., Huang, J., Liu, Y., Rao, J., Luo, D., & He, M. (2015). Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach. Frontiers in Plant Science, 6, 829.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yadav, R. K., Perales, M., Gruel, J., Girke, T., Jonsson, H., & Reddy, G. V. (2011). WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes and Development, 25, 2025–2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yang, Y., Moore, M. J., Brockington, S. F., Soltis, D. E., Wong, K. S., et al. (2015). Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Molecular Biology and Evolution, 32, 2001–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yanofsky, M., Ma, H., Bowman, J. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990). https://doi.org/10.1038/346035a0

    Article  CAS  PubMed  Google Scholar 

  139. Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., & Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346, 35–39.

    Article  CAS  PubMed  Google Scholar 

  140. Yant, L., Mathieu, J., Dinh, T. T., Ott, F., Lanz, C., Wollmann, H., Chen, X., & Schmid, M. (2010). Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell, 22, 2156–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zeng, F., Biligetu, B., Coulman, B., Schellenberg, M. P., & Fu, Y. (2017). RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.). PLoS ONE, 12(5), 1–21.

    Article  Google Scholar 

  142. Zhang, F., Liu, X., Zhang, A., Jiang, Z., Chen, L., & Zhang, X. (2019). Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis. BMC Plant Biology, 19, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhao, D., Yu, Q., Chen, C., & Ma, H. (2001). Genetic control of reproductive meristems. In M. T. McManus & B. Veit (Eds.), Meristematic tissues in plant growth and development (pp. 89–142). Sheffield Academic Press.

    Google Scholar 

  144. Zik, M., & Irish, V. F. (2003). Flower development: Initiation, differentiation, and diversification. Annual Review of Cell and Developmental Biology, 19, 119–124.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Bioaromatic Research Centre of Excellence and Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, to carry out this study. The authors gratefully acknowledge funding from University of Malaysia, Pahang under the Grant RDU182207-1. We also thank anonymous reviewers for their helpful suggestions to improve the article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RVP; Formal analysis and investigation: RVP, KNH; Writing—original draft preparation: RVP, KNH; Writing—review and editing: RVP, KNH, ANMR, SW, PB; Supervision: ANMR, SW.

Corresponding author

Correspondence to Reshma V. Patil.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, R.V., Hadawale, K.N., Ramli, A.N.M. et al. An Overview of Molecular Basis and Genetic Modification of Floral Organs Genes: Impact of Next-Generation Sequencing. Mol Biotechnol 65, 833–848 (2023). https://doi.org/10.1007/s12033-022-00633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00633-7

Keywords

Navigation