Skip to main content

Advertisement

Log in

An Appraisal on Prominent Industrial and Biotechnological Applications of Bacterial Lipases

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microbial lipases expedite the hydrolysis and synthesis of long-chain acyl esters. They are highly significant commercial biocatalysts to biotechnologists and organic chemists. The market size of lipase is anticipated to reach $590 million by 2023. This is all owing to their versatility in properties, including stability in organic solvents, interfacial activation in micro-aqueous environments, high substrate specificity, and activity in even non-aqueous milieu. Lipases are omnipresent and synthesized by various living organisms, including animals, plants, and microorganisms. Microbial lipases are the preferred choice for industrial applications as they entail low production costs, higher yield independent of seasonal changes, easier purification practices, and are capable of being genetically modified. Microbial lipases are employed in several common industries, namely various food manufactories (dairy, bakery, flavor, and aroma enhancement, etc.), leather tanneries, paper and pulp, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation and waste treatment, and many more. In recent decades, circumspection toward eco-friendly and sustainable energy has led scientists to develop industrial mechanisms with lesser waste/effluent generation, minimal overall energy usage, and biocatalysts that can be synthesized using renewable, low-cost, and unconventional raw materials. However, there are still issues regarding the commercial use of lipases which make industrialists wary and sometimes even switch back to chemical catalysis. Industrially relevant lipase properties must be further optimized, analyzed, and explored to ensure their continuous successful utilization. This review comprehensively describes the general background, structural characteristics, classifications, thermostability, and various roles of bacterial lipases in important industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information file].

References

  1. Veríssimo, L. A. A., Mól, P. C. G., Soares, W. C. L., Minim, V. P. R., Hespanhol, M. C., & Minim, L. A. (2018). Development of a bioreactor based on lipase entrapped in a monolithic cryogel for esterification and interesterification reactions. Revista Mexicana de Ingenieria Quimica, 17, 177–187.

    Article  Google Scholar 

  2. Nawal, G., Irfan, M., Ashfaq, S., & Shakir, H. A. (2019). An overview of bacterial lipases and their enormous applications. Punjab University Journal of Zoology, 34, 61–71. https://doi.org/10.17582/journal.pujz/2019.34.1.61.71

    Article  Google Scholar 

  3. Monteiro, R. R. C., da Arana-Peña, S., Rocha, T. N., Miranda, L. P., Berenguer-Murcia, Á., dos Tardioli, P. W., Santos, J. C. S., & Fernandez-Lafuente, R. (2020). Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution? Renewable Energy, 164, 1566–1587. https://doi.org/10.1016/j.renene.2020.10.071

    Article  CAS  Google Scholar 

  4. Qiu, J., Han, R., & Wang, C. (2021). Microbial halophilic lipases: A review. Journal of Basic Microbiology, 61, 594–602. https://doi.org/10.1002/jobm.202100107

    Article  CAS  PubMed  Google Scholar 

  5. Adetunji, A. I., & Olaniran, A. O. (2021). Production strategies and biotechnological relevance of microbial lipases: A review. Brazilian Journal of Microbiology, 52, 1257–1269. https://doi.org/10.1007/s42770-021-00503-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rafiee, F., & Rezaee, M. (2021). Different strategies for the lipase immobilization on the chitosan-based supports and their applications. International Journal of Biological Macromolecules, 179, 170–195. https://doi.org/10.1016/j.ijbiomac.2021.02.198

    Article  CAS  PubMed  Google Scholar 

  7. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397. https://doi.org/10.1016/S0958-1669(02)00341-5

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781. https://doi.org/10.1007/s00253-004-1568-8

    Article  CAS  PubMed  Google Scholar 

  9. Sun, J., & Liu, S. Q. (2015). Ester synthesis in aqueous media by lipase: Alcoholysis, esterification and substrate hydrophobicity. Journal of Food Biochemistry, 39, 11–18. https://doi.org/10.1111/jfbc.12104

    Article  CAS  Google Scholar 

  10. Arumugam, A., & Ponnusami, V. (2017). Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon, 3, e00486. https://doi.org/10.1016/j.heliyon.2017.e00486

    Article  CAS  PubMed  Google Scholar 

  11. Szczęsna-Antczak, M., Struszczyk-Świta, K., Rzyska, M., Szeląg, J., Stańczyk, Ł, & Antczak, T. (2018). Oil accumulation and in situ trans/esterification by lipolytic fungal biomass. Bioresource Technology, 265, 110–118. https://doi.org/10.1016/j.biortech.2018.05.094

    Article  CAS  PubMed  Google Scholar 

  12. Nurhasanah, S., Munarso, S. J., Wulandari, N., & Hariyadi, P. (2020). Physical Characteristics of Structured Lipid Synthesized by Lipase Catalyzed Interesterification of Coconut and Palm Oils, Pertanika. Journal of Science and Technology, 28, 19–31.

    Google Scholar 

  13. Vafaei, N., Eskin, M. N., Rempel, C. B., Jones, P. J., & Scanlon, M. G. (2020). Interesterification of soybean oil with propylene glycol in supercritical carbon dioxide and analysis by NMR spectroscopy. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03200-0

    Article  PubMed  Google Scholar 

  14. Corradini, F. A., Alves, E. S., Kopp, W., Ribeiro, M. P., Mendes, A. A., Tardioli, P. W., Giordano, R. C., & Giordano, R. L. C. (2019). Kinetic study of soybean oil hydrolysis catalyzed by lipase from solid castor bean seeds. Chemical Engineering Research and Design, 144, 115–122. https://doi.org/10.1016/j.cherd.2019.02.008

    Article  CAS  Google Scholar 

  15. Shi, K., Jing, J., Song, L., Su, T., & Wang, Z. (2020). Enzymatic hydrolysis of polyester: Degradation of poly (ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. International Journal of Biological Macromolecules, 144, 183–189. https://doi.org/10.1016/j.ijbiomac.2019.12.105

    Article  CAS  PubMed  Google Scholar 

  16. Akil, E., Pereira, A. D. S., El-Bacha, T., Amaral, P. F., & Torres, A. G. (2020). Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. International Journal of Biological Macromolecules, 163, 910–918. https://doi.org/10.1016/j.ijbiomac.2020.06.282

    Article  CAS  PubMed  Google Scholar 

  17. Kuo, C. H., Huang, C. Y., Lee, C. L., Kuo, W. C., Hsieh, S. L., & Shieh, C. J. (2020). Synthesis of DHA/EPA ethyl esters via lipase-catalyzed acidolysis using Novozym® 435: A kinetic study. Catalysts, 10, 565. https://doi.org/10.3390/catal10050565

    Article  CAS  Google Scholar 

  18. Yingying, Y. A. N. G., Guolong, Y. A. N. G., Jingbo, H. U., & Menghua, W. A. N. G. (2018). Effect of Mono-, Di-, and Trihydric Alcohols on Lipase-Catalyzed Alcoholysis of Phosphatidylcholine in Hexane. GOST, 1, 105–108. https://doi.org/10.3724/SP.J.1447.GOST.2018.18030

    Article  Google Scholar 

  19. Rachmadona, N., Amoah, J., Quayson, E., Hama, S., Yoshida, A., Kondo, A., & Ogino, C. (2020). Lipase-catalyzed ethanolysis for biodiesel production of untreated palm oil mill effluent. Sustainable Energy & Fuels, 4, 1105–1111. https://doi.org/10.1039/C9SE00457B

    Article  CAS  Google Scholar 

  20. Zeng, S., Liu, J., Anankanbil, S., Chen, M., Guo, Z., Adams, J. P., & Li, Z. (2018). Amide synthesis via aminolysis of ester or acid with an intracellular lipase. ACS Catalysis, 8, 8856–8865. https://doi.org/10.1021/acscatal.8b02713

    Article  CAS  Google Scholar 

  21. Chandra, P., Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories, 19, 1–42. https://doi.org/10.1186/s12934-020-01428-8

    Article  CAS  Google Scholar 

  22. Sarda, L., & Desnuelle, P. (1958). Action de la lipase pancréatique sur les esters en émulsion. Biochimica et Biophysica Acta, 30, 513–521. https://doi.org/10.1016/0006-3002(58)90097-0

    Article  CAS  PubMed  Google Scholar 

  23. Bilal, M., Fernandes, C. D., Mehmood, T., Nadeem, F., Tabassam, Q., & Ferreira, L. F. R. (2021). Immobilized lipases-based nano-biocatalytic systems—A versatile platform with incredible biotechnological potential. International Journal of Biological Macromolecules, 175, 108–122. https://doi.org/10.1016/j.ijbiomac.2021.02.010

    Article  CAS  PubMed  Google Scholar 

  24. Costantini, A., & Califano, V. (2021). Lipase Immobilization in Mesoporous Silica Nanoparticles for Biofuel Production. Catalysts, 11, 629. https://doi.org/10.3390/catal11050629

    Article  CAS  Google Scholar 

  25. Mhetras, N., Mapare, V., & Gokhale, D. (2021). Cold active lipases: Biocatalytic tools for greener technology. Applied Biochemistry and Biotechnology, 193, 2245–2266. https://doi.org/10.1007/s12010-021-03516-w

    Article  CAS  PubMed  Google Scholar 

  26. Chandra, E. P., & Singh, D. P. (2022). Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2038076

    Article  PubMed  Google Scholar 

  27. Santos, M. R., Hirata, D. B., & Angelotti, J. A. F. (2022). Lipases: Sources of acquisition, ways of production, and recent applications. Catalyst Research. https://doi.org/10.21926/cr.2202013

    Article  Google Scholar 

  28. Cavalcante, F. T. T., de Neto, F. S., da Aguiar Falcão, I. R., de Silva Souza, J. E., da Moura Junior, L. S., Silva Sousa, P., de Rocha, T. G., de Sousa, I. G., de Lima Gomes, P. H., Souza, M. C. M., & dos Santos, J. C. S. (2020). Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288, 119577. https://doi.org/10.1016/j.fuel.2020.119577

    Article  CAS  Google Scholar 

  29. Subroto, E., Nurhasanah, S., & Munarso, S. J. (2021). Lipase immobilization by adsorption techniques on the hydrophobically modified matrix: A review. International Journal of Engineering Technology, 69, 49–55.

    Google Scholar 

  30. Ramesh, A., Devi, P., Chattopadhyay, H., & Kavita, M. (2020). Commercial applications of Microbial Enzymes. In Microbial Enzymes: Roles and Applications in Industries, vol. 11 (Arora, N. K. Mishra, J. Mishra, V., eds), Springer, Singapore. pp. 137–184. https://doi.org/10.1007/978-981-15-1710-5_6

  31. Szymczak, T., Cybulska, J., Podleśny, M., & Frąc, M. (2021). Various perspectives on microbial lipase production using agri-food waste and renewable products. Agriculture, 11, 540. https://doi.org/10.3390/agriculture11060540

    Article  CAS  Google Scholar 

  32. Carrière, F., Thirstrup, K., Hjorth, S., & Boel, E. (1994). Cloning of the classical guinea pig pancreatic lipase and comparison with the lipase related protein 2. FEBS Letters, 338, 63–68. https://doi.org/10.1016/0014-5793(94)80117-7

    Article  PubMed  Google Scholar 

  33. Belguith, H., Fattouch, S., Jridi, T., & Ben, H. J. (2013). Immunopurification and characterization of a rape (Brassica napus L.) seedling lipase. African Journal of Biotechnology, 12, 3224–3234. https://doi.org/10.5897/AJB09.04

    Article  CAS  Google Scholar 

  34. Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., Afzal, M., Kouser, A., & Nadeem, H. (2018). Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  35. Bharathi, D., & Rajalakshmi, G. (2019). Microbial lipases: An overview of screening, production and purification. Biocatalysis and Agricultural Biotechnology, 22, 101368. https://doi.org/10.1016/j.bcab.2019.101368

    Article  Google Scholar 

  36. Bharathi, D., Rajalakshmi, G., & Komathi, S. (2019). Optimization and production of lipase enzyme from bacterial strains isolated from petrol spilled soil. Journal of King Saud University Science, 31, 898–901. https://doi.org/10.1016/j.jksus.2017.12.018

    Article  Google Scholar 

  37. Gupta, R., Kumari, A., Syal, P., & Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in Lipid Research, 57, 40–54. https://doi.org/10.1016/j.plipres.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  38. Geoffry, K., & Achur, R. N. (2018). Screening and production of lipase from fungal organisms. Biocatalysis and Agricultural Biotechnology, 14, 241–253. https://doi.org/10.1016/j.bcab.2018.03.009

    Article  Google Scholar 

  39. Meghwanshi, G. K., & Vashishtha, A. (2018). Biotechnology of fungal lipases, in Fungi and their role in sustainable development: Current perspectives, vol. 1 (Gehlot, P. and Singh, J., eds). Singapore: Springer . pp. 383–411. https://doi.org/10.1007/978-981-13-0393-7_22

  40. Zavarise, J. P., Pinotti, L. M., & Freitas, R. R. (2019). Progress in the production of fungal lipases by submerged fermentation. International Journal of Advanced Engineering Research Science, 6, 367–373. https://doi.org/10.22161/ijaers.612.38

    Article  Google Scholar 

  41. Szczęsna-Antczak, M., Kamińska, J., Florczak, T., & Turkiewicz, M. (2014). Cold-active yeast lipases: recent issues and future prospects, in Cold-adapted Yeasts, vol. 1 (Buzzini, P. and Margesin, R., eds). Berlin: Springer . pp. 353–375. https://doi.org/10.1007/978-3-642-39681-6_16

  42. Pérez, M. M., Gonçalves, E. C. G., Vici, A. C., Salgado, J. C. S., & de Moraes, M. D. L. T. (2019). Fungal lipases: Versatile tools for White Biotechnology, in Recent Advancement in White Biotechnology Through Fungi, vol. 1 (Yadav, A. N. Mishra, S. Singh, S. Gupta, A., eds). Cham: Springer. pp. 361‒404. https://doi.org/10.1007/978-3-030-10480-1_11

  43. Mazhar, H., Abbas, N., Hussain, Z., Sohail, A., & Ali, S. S. (2016). Extracellular lipase production from Bacillus subtilis using agro-industrial waste and fruit peels. Punjab University of Journal of Zoology, 31, 261–267.

    Google Scholar 

  44. Zhao, J., Liu, S., Gao, Y., Ma, M., Yan, X., Cheng, D., Wan, D., Zeng, Z., Yu, P., & Gong, D. (2021). Characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for applications in detergent industry and biodegradation of 2,4-D butyl ester. International Journal of Biological Macromolecules, 176, 126–136. https://doi.org/10.1016/j.ijbiomac.2021.01.214

    Article  CAS  PubMed  Google Scholar 

  45. Imamura, S., & Kitaura, S. (2000). Purification and characterization of a monoacylglycerol lipase from the moderately thermophilic Bacillus sp. H-257. Journal of Biological Chemistry, 127, 419–425. https://doi.org/10.1093/oxfordjournals.jbchem.a022623

    Article  CAS  Google Scholar 

  46. Guncheva, M., & Zhiryakova, D. (2011). Catalytic properties and potential applications of Bacillus lipases. Journal of Molecular Catalysis. B, Enzymatic, 68, 1–21. https://doi.org/10.1016/j.molcatb.2010.09.002

    Article  CAS  Google Scholar 

  47. Hasan, F., Shah, A., & Hameed, A. (2007). Purification and characterization of a mesophilic lipase from Bacillus subtilis FH5 stable at high temperature and pH. Acta Biologica Hungarica, 58, 115–132. https://doi.org/10.1556/abiol.58.2007.1.11

    Article  PubMed  Google Scholar 

  48. Laachari, F. E., Bergadi, F., Elabed, S., Sayari, A., Mohammed, I., & Ibnsouda, S. K. (2014). Biochemical Study of the Effect of Free Fatty Acids in the Interface on a Novel Lipase from Bacillus pumilus Strain. World Applied Sciences Journal, 32, 2070–2075. https://doi.org/10.5829/idosi.wasj.2014.32.10.1305

    Article  CAS  Google Scholar 

  49. Iqbal, S. A., & Rehman, A. (2015). Characterization of lipase from Bacillus subtilis I-4 and its potential use in oil contaminated wastewater. Brazilian Archives of Biology and Technology, 58, 789–797. https://doi.org/10.1590/S1516-89132015050318

    Article  CAS  Google Scholar 

  50. Kumar, R., Sharma, A., Kumar, A., & Singh, D. (2012). Lipase from Bacillus pumilus RK31: Production, purification and some properties. World Applied Sciences Journal, 16, 940–948.

    CAS  Google Scholar 

  51. Sangeetha, R., Arulpandi, I., & Geetha, A. (2014). Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2. Brazilian Journal of Microbiology, 45, 389–393. https://doi.org/10.1590/S1517-83822014000200004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saranya, P., Kumari, S. H., Prasad Rao, B., & Sekaran, G. (2014). Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater. Environmental Science and Pollution Research, 21, 3907–3919. https://doi.org/10.1007/s11356-013-2354-x

    Article  CAS  PubMed  Google Scholar 

  53. Lailaja, V. P., & Chandrasekaran, M. (2013). Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World Journal of Microbiology & Biotechnolgy, 29, 1349–1360. https://doi.org/10.1007/s11274-013-1298-0

    Article  CAS  Google Scholar 

  54. Patel, K., & Parikh, S. (2022). Identification, production, and purification of a novel lipase from Bacillus safensis. Journal of Applied Biology & Biotechnolgy, 10, 73–76. https://doi.org/10.7324/JABB.2022.100410

    Article  CAS  Google Scholar 

  55. Rathi, P., Saxena, R., & Gupta, R. (2001). A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochemistry, 37, 187–192. https://doi.org/10.1016/S0032-9592(01)00200-X

    Article  CAS  Google Scholar 

  56. Kauffmann, I., & Schmidt-Dannert, C. (2001). Conversion of Bacillus thermocatenulatus lipase into an efficient phospholipase with increased activity towards long-chain fatty acyl substrates by directed evolution and rational design. Protein Engineering, 14, 919–928. https://doi.org/10.1093/protein/14.11.919

    Article  CAS  PubMed  Google Scholar 

  57. Li, H., & Zhang, X. (2005). Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression and Purification, 42, 153–159. https://doi.org/10.1016/j.pep.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  58. Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2007). A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11, 527–535. https://doi.org/10.1007/s00792-007-0069-y

    Article  CAS  PubMed  Google Scholar 

  59. Dror, A., Shemesh, E., Dayan, N., & Fishman, A. (2014). Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Applied and Environment Microbiology, 80, 1515–1527. https://doi.org/10.1128/AEM.03371-13

    Article  CAS  Google Scholar 

  60. Abol-Fotouh, D., AlHagar, O. E., & Hassan, M. A. (2021). Optimization, purification, and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus stearothermophilus FMR12 for detergent formulations. International Journal of Biological Macromolecules, 181, 125–135. https://doi.org/10.1016/j.ijbiomac.2021.03.111

    Article  CAS  PubMed  Google Scholar 

  61. Abdel-Fattah, Y. R., & Gaballa, A. A. (2008). Identification and over-expression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli. Microbiological Research, 163, 13–20. https://doi.org/10.1016/j.micres.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  62. Abol Fotouh, D. M., Bayoumi, R. A., & Hassan, M. A. (2016). Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme Research. https://doi.org/10.1155/2016/9034364

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moharana, T. R., Pal, B., & Rao, N. M. (2019). X-ray structure and characterization of a thermostable lipase from Geobacillus thermoleovorans. Biochemical and Biophysical Research Communications, 508(1), 145–151.

    Article  CAS  PubMed  Google Scholar 

  64. Dey, A., Chattopadhyay, A., Mukhopadhyay, S. K., Saha, P., Chatterjee, S., Maiti, T. K., & Roy, P. (2014). Production, partial purification and characterization of an extracellular psychrotrophic lipase from Pseudomonas sp. ADT3. Journal of Bioremediation & Biodegration, 5, 2. https://doi.org/10.4172/2155-6199.1000242

    Article  CAS  Google Scholar 

  65. Unni, K. N., Priji, P., Sajith, S., Faisal, P. A., & Benjamin, S. (2016). Pseudomonas aeruginosa strain BUP2, a novel bacterium inhabiting the rumen of Malabari goat, produces an efficient lipase. Biologia, 71, 378–387. https://doi.org/10.1515/biolog-2016-0057

    Article  CAS  Google Scholar 

  66. Ilesanmi, O. I., Adekunle, A. E., Omolaiye, J. A., Olorode, E. M., & Ogunkanmi, A. L. (2020). Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Scientific African, 8, e00279. https://doi.org/10.1016/j.sciaf.2020.e00279

    Article  Google Scholar 

  67. Phukon, L. C., Chourasia, R., Kumari, M., Godan, T. K., Sahoo, D., Parameswaran, B., & Rai, A. K. (2020). Production and characterisation of lipase for application in detergent industry from a novel Pseudomonas helmanticensis HS6. Bioresource Technology, 309, 123352. https://doi.org/10.1016/j.biortech.2020.123352

    Article  CAS  PubMed  Google Scholar 

  68. Veerapagu, M., Narayanan, A. S., Ponmurugan, K., & Jeya, K. R. (2013). Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian Journal of Pharmaceutical and Clinical Research, 6, 62–67.

    Google Scholar 

  69. Bacha, A. B., Al-Assaf, A., Moubayed, N. M., & Abid, I. (2018). Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations, Saudi. Journal of Biological Sciences, 25, 409–417. https://doi.org/10.1016/j.sjbs.2016.10.006

    Article  CAS  Google Scholar 

  70. Rmili, F., Achouri, N., Smichi, N., Krayem, N., Bayoudh, A., Gargouri, Y., Chamkha, M., & Fendri, A. (2019). Purification and biochemical characterization of an organic solvent-tolerant and detergent-stable lipase from Staphylococcus capitis. Biotechnology Progress, 35, 2833. https://doi.org/10.1002/btpr.2833

    Article  CAS  Google Scholar 

  71. Brust, B., Lecoufle, M., Tuaillon, E., Dedieu, L., Canaan, S., Valverde, V., & Kremer, L. (2011). Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis. PLoS ONE, 6, 25078. https://doi.org/10.1371/journal.pone.0025078

    Article  CAS  Google Scholar 

  72. Ahmed, E. H., Raghavendra, T., & Madamwar, D. (2010). An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: Application for ethyl caprylate synthesis. Bioresource Technology, 101, 3628–3634. https://doi.org/10.1016/j.biortech.2009.12.107

    Article  CAS  PubMed  Google Scholar 

  73. Gupta, P., Chaubey, A., Mahajan, N., & Anand, N. (2021). A review on Arthrobacter sp. lipase: A versatile biocatalyst for the kinetic resolution to access enantiomerically pure/enriched compounds. Chirality, 33, 209–225. https://doi.org/10.1002/chir.23304

    Article  CAS  PubMed  Google Scholar 

  74. Gurkok, S., & Ozdal, M. (2021). Purification and characterization of a novel extracellular, alkaline, thermoactive, and detergent-compatible lipase from Aeromonas caviae LipT51 for application in detergent industry. Protein Expression and Purification, 180, 105819. https://doi.org/10.1016/j.pep.2021.105819

    Article  CAS  PubMed  Google Scholar 

  75. Rønne, T. H., Pedersen, L. S., & Xu, X. (2005). Triglyceride selectivity of immobilized Thermomyces lanuginosus lipase in interesterification. Journal of the American Oil Chemists Society, 82, 737–743. https://doi.org/10.1007/s11746-005-1136-8

    Article  Google Scholar 

  76. Haq, I. U., Idrees, S., & Rajoka, M. I. (2002). Production of lipases by Rhizopus oligosporus by solid-state fermentation. Process Biochemistry, 37, 637–641. https://doi.org/10.1016/S0032-9592(01)00252-7

    Article  Google Scholar 

  77. Iftikhar, T., Niaz, M., Zia, M. A., & Haq, I. U. (2010). Production of extracellular lipases by Rhizopus oligosporus in a stirred fermentor. Brazilian Journal of Microbiology, 41(4), 1124–1132. https://doi.org/10.1590/S1517-838220100004000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mehta, A., Bodh, U., & Gupta, R. (2018). Isolation of a novel lipase producing fungal isolate Aspergillus fumigatus and production optimization of enzyme. Biocatal. Biotransformation., 36, 450–457. https://doi.org/10.1080/10242422.2018.1447565

    Article  CAS  Google Scholar 

  79. Nema, A., Patnala, S. H., Mandari, V., Kota, S., & Devarai, S. K. (2019). Production and optimization of lipase using Aspergillus niger MTCC 872 by solid-state fermentation. Bulletin National Research Centre, 43, 1–8. https://doi.org/10.1186/s42269-019-0125-7

    Article  Google Scholar 

  80. Alabdalall, A. H., & ALanazi, N. A. Aldakeel, S. A. AbdulAzeez, S. and Borgio, J. F. (2020). Molecular, physiological, and biochemical characterization of extracellular lipase production by Aspergillus niger using submerged fermentation. PeerJ, 8, e9425. https://doi.org/10.7717/peerj.9425

    Article  PubMed  PubMed Central  Google Scholar 

  81. Naqvi, S. H., Dahot, M. U., Ali, A., Khan, Y., & Rafiq, M. (2011). Production and characterization of extracellular lipase secreted by Mucor geophillus. African Journal of Biotechnology, 10, 19589–19606. https://doi.org/10.5897/AJB11.216

    Article  CAS  Google Scholar 

  82. Abed, S. M., Wei, W., Ali, A. H., Korma, S. A., Mousa, A. H., Hassan, H. M., Jin, Q., & Wang, X. (2018). Synthesis of structured lipids enriched with medium-chain fatty acids via solvent-free acidolysis of microbial oil catalyzed by Rhizomucor miehei lipase. LWT, 93, 306–315. https://doi.org/10.1016/j.lwt.2018.03.057

    Article  CAS  Google Scholar 

  83. Sahay, S., & Chouhan, D. (2018). Study on the potential of cold-active lipases from psychrotrophic fungi for detergent formulation. Journal, Genetic Engineering & Biotechnology, 16, 319–325. https://doi.org/10.1016/j.jgeb.2018.04.006

    Article  Google Scholar 

  84. Cardenas, F., de Alvarez, E., Castro-Alvarez, M. S., Sanchez-Montero, J. M., Valmaseda, M., Elson, S. W., Sinisterra, J. V., & J. V. (2001). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. Journal of Molecular Catalysis. B, Enzymatic, 14, 111–123. https://doi.org/10.1016/S1381-1177(00)00244-7

    Article  CAS  Google Scholar 

  85. Oliveira, A. C. D., Fernandes, M. L., & Mariano, A. B. (2014). Production and characterization of an extracellular lipase from Candida guilliermondii. Brazilian Journal of Microbiology, 45, 1503–1511. https://doi.org/10.1590/S1517-83822014000400047

    Article  CAS  PubMed  Google Scholar 

  86. Cai, Y., Wang, L., Liao, X., Ding, Y., & Sun, J. (2009). Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sp. SYBC WU-3. Process Biochemistry, 44, 786–790. https://doi.org/10.1016/j.procbio.2009.03.011

    Article  CAS  Google Scholar 

  87. Ramos, E. Z., de Júnior, R. H. M., Castro, P. F., Tardioli, P. W., Mendes, A. A., & Fernandéz-Lafuente, R. (2015). Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. Journal of Molecular Catalysis. B, Enzymatic, 118, 43–51. https://doi.org/10.1016/j.molcatb.2015.05.009

    Article  CAS  Google Scholar 

  88. Aarthy, M., Saravanan, P., Gowthaman, M. K., Rose, C., & Kamini, N. R. (2014). Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chemical Engineering Research and Design, 92, 1591–1601. https://doi.org/10.1016/j.cherd.2014.04.008

    Article  CAS  Google Scholar 

  89. Meunchan, M., Michely, S., Devillers, H., Nicaud, J. M., Marty, A., & Neuvéglise, C. (2015). Comprehensive analysis of a yeast lipase family in the Yarrowia clade. PLoS ONE, 10, e0143096. https://doi.org/10.1371/journal.pone.0143096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Demera, L. L., Barahona, P. P., & Barriga, E. J. C. (2019). Production, extraction and characterization of lipases from the antarctic yeast Guehomyces pullulans. American Journal of Biochemistry and Biotechnology, 15, 75–82. https://doi.org/10.3844/ajbbsp.2019

    Article  CAS  Google Scholar 

  91. Salgado, V., Fonseca, C. L., da Silva, T., Roseiro, J. C., & Eusébio, A. (2020). Isolation and identification of Magnusiomyces capitatus as a lipase-producing yeast from olive mill wastewater. Waste Biomass Valor., 11, 3207–3221. https://doi.org/10.1007/s12649-019-00725-7

    Article  CAS  Google Scholar 

  92. Bussamara, R., de Fuentefria, A. M., Oliveira, E. S., Broetto, L., Simcikova, M., Valente, P., Schrank, A., & Vainstein, M. H. (2010). Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresource Technology, 101, 268–275. https://doi.org/10.1016/j.biortech.2008.10.063

    Article  CAS  PubMed  Google Scholar 

  93. Hou, C. T. (1997). Characterization of new yeast lipases. Journal of the American Oil Chemists Society, 74, 1391–1394. https://doi.org/10.1007/s11746-997-0242-6

    Article  CAS  Google Scholar 

  94. Taskin, M., Ucar, M. H., Unver, Y., Kara, A. A., Ozdemir, M., & Ortucu, S. (2016). Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology, 8, 97–103. https://doi.org/10.1016/j.bcab.2016.08.009

    Article  Google Scholar 

  95. Duarte, A. W. F., Lopes, A. M., Molino, J. V. D., Pessoa, A., & Sette, L. D. (2015). Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Separation and Purification Technology, 156, 215–225. https://doi.org/10.1016/j.seppur.2015.10.001

    Article  CAS  Google Scholar 

  96. Fatima, S., Faryad, A., Ataa, A., Joyia, F. A., & Parvaiz, A. (2019). Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnology and Applied Biochemistry, 68, 445–458. https://doi.org/10.1002/bab.2019

    Article  CAS  Google Scholar 

  97. Priji, P., Sajith, S., Faisal, P. A., & Benjamin, S. (2016). Microbial lipases− properties and applications. Journal of Microbiology and Biotechnology Food Science, 6, 799–807. https://doi.org/10.15414/jmbfs.2016.6.2.799-807

    Article  CAS  Google Scholar 

  98. Vishnoi, N., Dixit, S., & Mishra, J. (2020). Microbial lipases and their versatile applications, in Microbial enzymes: Roles and applications in industries, (Arora, N. K. Mishra, J. Mishra, V., eds). Singapore: Springer . pp. 207‒230. https://doi.org/10.1007/978-981-15-1710-5_8

  99. Negi, S. (2019). Lipases: A promising tool for food industry, in Green Bio-processes, vol. 1 (Parameswaran, B. Varjani, S. Raveendran, S., eds). Singapore: Springer . pp. 181‒198. https://doi.org/10.1007/978-981-13-3263-0_10

  100. Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: Classification and properties. The Biochemical Journal, 343, 177–183. https://doi.org/10.1042/bj3430177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramnath, L., Sithole, B., & Govinden, R. (2017). Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Canadian Journal of Microbiology, 63, 179–192. https://doi.org/10.1139/cjm-2016-0447

    Article  CAS  PubMed  Google Scholar 

  102. Albayati, S. H., Masomian, M., Ishak, S. N. H., Mohamad Ali, M. S. B., Thean, A. L., Mohd Shariff, F. B., Noor, B. M., & N. D. and Raja Abd Rahman, R. N. Z. (2020). Main structural targets for engineering lipase substrate specificity. Catalysts, 10, 747. https://doi.org/10.3390/catal10070747

    Article  CAS  Google Scholar 

  103. Barzkar, N., Sohail, M., Jahromi, S. T., Gozari, M., Poormozaffar, S., Nahavandi, R., & Hafezieh, M. (2021). Marine bacterial esterases: Emerging biocatalysts for industrial applications. Applied Biochemistry and Biotechnology, 193, 1187–1214. https://doi.org/10.1007/s12010-020-03483-8

    Article  CAS  PubMed  Google Scholar 

  104. Rozi, M. F. A. M., Rahman, R. N. Z. R. A., Leow, A. T. C., & Ali, M. S. M. (2022). Ancestral sequence reconstruction of ancient lipase from family I.3 bacterial lipolytic enzymes. Molecular Phylogenetic and Evolution, 168, 107381. https://doi.org/10.1016/j.ympev.2021.107381

    Article  CAS  Google Scholar 

  105. Hitch, T. C., & Clavel, T. (2019). A proposed update for the classification and description of bacterial lipolytic enzymes. PeerJ, 7, e7249. https://doi.org/10.7717/peerj.7249

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jo, E., Kim, J., Lee, A., Moon, K., & Cha, J. (2021). Identification and characterization of a novel thermostable GDSL-type lipase from Geobacillus thermocatenulatus. Journal of Microbiology and Biotechnology, 31, 483–491. https://doi.org/10.4014/jmb.2012.12036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korman, T. P., & Bowie, J. U. (2012). Crystal structure of Proteus mirabilis lipase, a novel lipase from the Proteus/psychrophilic subfamily of lipase family I. 1. PLoS ONE, 7, e52890. https://doi.org/10.1371/journal.pone.0052890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Borelli, G. M., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16, 20774–20840. https://doi.org/10.3390/ijms160920774

    Article  CAS  Google Scholar 

  109. Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., dos Bezerra, R. M., Santos, J. C. S., & Gonçalves, L. R. B. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, 75, 99–120. https://doi.org/10.1016/j.procbio.2018.09.003

    Article  CAS  Google Scholar 

  110. Kovacic, F., Babic, N., Krauss, U., & Jaeger, K. E. (2019). Classification of lipolytic enzymes from bacteria, in Aerobic utilization of hydrocarbons, oils and lipids. Handbook of hydrocarbon and lipid microbiology (Rojo, F., eds). Cham: Springer . pp. 1‒35. https://doi.org/10.1007/978-3-319-39782-5_39-1

  111. Haryati, T., Widhiastuty, M. P., Warganegara, F. M., & Akhmaloka, A. (2022). Molecular characterization of transesterification activity of novel lipase family I.1. Bioscience Report, 42, 20220654. https://doi.org/10.1042/BSR20220654

    Article  Google Scholar 

  112. Karakaş, F., & Arslanoğlu, A. (2020). Gene cloning, heterologous expression, and partial characterization of a novel cold-adapted subfamily I. 3 lipase from Pseudomonas fluorescence KE38. Science and Reports, 10, 1–13. https://doi.org/10.1038/s41598-020-79199-w

    Article  CAS  Google Scholar 

  113. Zhao, Z., Chen, S., Xu, L., Cai, J., Wang, J., & Wang, Y. (2022). Structural basis for the regiospecificity of a lipase from Streptomyces sp. W007. International Journal of Molecular Science, 23, 5822. https://doi.org/10.3390/ijms23105822

    Article  CAS  Google Scholar 

  114. Pirmanesh, S., Kermanshahi, R. K., Gharavi, S., & Qamsari, E. M. (2022). Cloning, expression, and purification of a GDSL-like lipase/acylhydrolase from a native lipase-producing bacterium, Lactobacillus fermentum Iran. Biomedical Journal, 26, 153–159. https://doi.org/10.52547/ibj.26.2.153

    Article  PubMed  Google Scholar 

  115. Nagaroor, V., & Gummadi, S. N. (2022). An overview of mammalian and microbial hormone-sensitive lipases (lipolytic family IV): Biochemical properties and industrial applications. Biotechnology and Genetic Engineering Reviews. https://doi.org/10.1080/02648725.2022.2127071

    Article  PubMed  Google Scholar 

  116. Liu, X., Zhou, M., Xing, S., Wu, T., He, H., Bielicki, J. K., & Chen, J. (2022). Identification and biochemical characterization of a novel hormone-sensitive lipase family esterase Est19 from the Antarctic bacterium Pseudomonas sp. E2–15. Biomolecules, 11, 1552. https://doi.org/10.3390/biom11111552

    Article  CAS  Google Scholar 

  117. Golaki, B. P., Aminzadeh, S., Karkhane, A. A., Yakhchali, B., Farrokh, P., Khaleghinejad, S. H., Tehrani, A. A., & Mehrpooyan, S. (2015). Cloning, expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01. Protein Expression and Purification, 109, 120–126. https://doi.org/10.1016/j.pep.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  118. Yuan, D., Lan, D., Xin, R., Yang, B., & Wang, Y. (2016). Screening and characterization of a thermostable lipase from marine Streptomyces sp. Strain W007. Biotechnology and Applied Biochemistry, 63, 41–50. https://doi.org/10.1002/bab.1338

    Article  CAS  PubMed  Google Scholar 

  119. Emtenani, S., Asoodeh, A., & Emtenani, S. (2013). Molecular cloning of a thermo-alkaliphilic lipase from Bacillus subtilis DR8806: Expression and biochemical characterization. Process Biochemistry, 48, 1679–1685. https://doi.org/10.1016/j.procbio.2013.08.016

    Article  CAS  Google Scholar 

  120. Ryan, B., Priyanka, P., Kinsella, G., & Henehan, G. (2019). Isolation, purification and characterization of a novel solvent stable lipase from Pseudomonas reinekei. Protein Expression and Purification, 153, 121–130. https://doi.org/10.1016/j.pep.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  121. Li, P. Y., Zhang, Y. Q., Zhang, Y., Jiang, W. X., Wang, Y. J., Zhang, Y. S., Sun, Z. Z., Li, C. Y., Zhang, Y. Z., Shi, M., Song, X. Y., Zhao, L. S., & Chen, X. L. (2020). Study on a novel cold-active and halotolerant monoacylglycerol lipase widespread in marine bacteria reveals a new group of bacterial monoacylglycerol lipases containing unusual C (A/S) HSMG catalytic motifs. Frontiers in Microbiology, 11, 9. https://doi.org/10.3389/fmicb.2020.00009

    Article  PubMed  PubMed Central  Google Scholar 

  122. Parapouli, M., Foukis, A., Stergiou, P. Y., Koukouritaki, M., Magklaras, P., Gkini, O. A., Papamichael, E. M., Afendra, A. S., & Hatziloukas, E. (2018). Molecular, biochemical and kinetic analysis of a novel, thermostable lipase (LipSm) from Stenotrophomonas maltophilia Psi-1, the first member of a new bacterial lipase family (XVIII). Journal of Biological Research (Thessalon), 25, 1–12. https://doi.org/10.1186/s40709-018-0074-6

    Article  CAS  Google Scholar 

  123. Malekabadi, S., Badoei-Dalfard, A., & Karami, Z. (2018). Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. International Journal of Biological Macromolecules, 109, 389–398. https://doi.org/10.1016/j.ijbiomac.2017.11.173

    Article  CAS  PubMed  Google Scholar 

  124. Khara, F., Shafiei, M., & Galehdari, H. (2022). A novel acidic and SDS tolerant halophilic lipase from moderate halophile Nesterenkonia sp. strain F: Molecular cloning, structure analysis and biochemical characterization. Biologia, 77, 1135–1150. https://doi.org/10.1007/s11756-021-01005-3

    Article  CAS  Google Scholar 

  125. Barik, A., Sen, S. K., Rajhans, G., & Raut, S. (2022). Purification and optimization of extracellular lipase from a novel strain Kocuria flava Y4. International Journal of Analytical Chemistry. https://doi.org/10.1155/2022/6403090

    Article  PubMed  PubMed Central  Google Scholar 

  126. Moura, M. V. H., Andrade, R. A. D., Dobler, L., Godoy Daiha, K. D., Brêda, G. C., Anobom, C. D., & Almeida, R. V. (2017). Extremophilic Lipases, in Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy, vol. 1 (Sani, R. K. Krishnaraj, R. N., eds). Cham: Springer . pp. 249‒270. https://doi.org/10.1007/978-3-319-54684-1_13

  127. Hamdan, S. H., Maiangwa, J., Ali, M. S. M., Normi, Y. M., Sabri, S., & Leow, T. C. (2021). Thermostable lipases and their dynamics of improved enzymatic properties. Applied Microbiology and Biotechnology, 105, 7069–7094. https://doi.org/10.1007/s00253-021-11520-7

    Article  CAS  PubMed  Google Scholar 

  128. Vivek, K., Sandhia, G. S., & Subramaniyan, S. (2022). Extremophilic lipases for industrial applications: A general review. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2022.108002

    Article  PubMed  Google Scholar 

  129. Ismail, A. R., Kashtoh, H., & Baek, K. H. (2021). Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. International Journal of Biological Macromolecules, 187, 127–142. https://doi.org/10.1016/j.ijbiomac.2021.07.101

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, H. M., Li, J. FWu., Shi, M. C., & H. L. and Tang, C. D. (2013). Determination of amino acids and dipeptides is correlated significantly with optimum temperatures of microbial lipases. Annales de Microbiologie, 63, 307–313. https://doi.org/10.1007/s13213-012-0475-y

    Article  CAS  Google Scholar 

  131. Ruslan, R. A., Rahman, R. N., Leow, T. C., Ali, M. S., Basri, M., & Salleh, A. B. (2012). Improvement of thermal stability via outer-loop ion pair interaction of mutated T1 lipase from Geobacillus zalihae strain T1. International Journal of Molecular Sciences, 13, 943–960. https://doi.org/10.3390/ijms13010943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Casas‐Godoy, L., Duquesne, S., Bordes, F., Sandoval, G., & Marty, A. (2012). Lipases: An Overview, in Lipases and Phospholipases. Methods in Molecular Biology, vol, 1835 (Sandoval, G., ed). Humana Press. pp. 3–30. https://doi.org/10.1007/978-1-4939-8672-9_1

  133. https://biosolutions.novozymes.com/en/leather/products/degreasing/greasex-ultra

  134. https://biosolutions.novozymes.com/en/laundry/products/lipexr-evityr-200-l

  135. https://biosolutions.novozymes.com/en/pulp-paper/products/resinaser-2x

  136. https://biosolutions.novozymes.com/en/dairy/products/cheese/palatase

  137. https://biosolutions.novozymes.com/en/leather/products/degreasing/novocor-ad-l

  138. https://biosolutions.novozymes.com/en/oils-fats/products/interestified-fats/lipozyme-tl-im

  139. https://biosolutions.novozymes.com/en/oils-fats/products/biodiesel/eversa-transform-20-fg

  140. https://biosolutions.novozymes.com/en/baking/products/dough-strengthening/lipopan-50

  141. https://www.abenzymes.com/en/your-industry/baking-flour-milling-and-pasta/baking-improvers/emulsifier-free-improvers/

  142. https://www.abenzymes.com/en/your-industry/grain-and-oilseed-processing/vegetable-oil-degumming/rohalase-pl-xtra/

  143. https://www.dsm.com/food-beverage/en_US/ingredients/savory/table-sauces-and-condiments/maxapal-a2.html

  144. https://www.dsm.com/food-beverage/en_US/ingredients/bakery-cereal-and-bars/bakery/panamore.html

  145. https://www.dsm.com/food-beverage/en_US/ingredients/bakery-cereal-and-bars/bakery/cakezyme.html

  146. https://www.dupontnutritionandbiosciences.com/products/natural-flavor-enzymes.html

  147. Raveedran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56, 16–30. https://doi.org/10.17113/ftb.56.01.18.5491

    Article  CAS  Google Scholar 

  148. Guerrand, D. (2017). Lipases industrial applications: Focus on food and agroindustries. OCL., 24, D403. https://doi.org/10.1051/ocl/2017031

    Article  Google Scholar 

  149. Badgujar, K. C., & Bhanage, B. M. (2014). Solvent stability study with thermodynamic analysis and superior biocatalytic activity of Burkholderia cepacia lipase immobilized on biocompatible hybrid matrix of poly (vinyl alcohol) and hypromellose. The Journal of Physical Chemistry B, 118, 14808–14819. https://doi.org/10.1021/jp5093493

    Article  CAS  PubMed  Google Scholar 

  150. Pande, G., Akoh, C. C., & Shewfelt, R. L. (2013). Utilization of enzymatically interesterified cottonseed oil and palm stearin-based structured lipid in the production of trans-free margarine. Biocatalysis and Agricultural Biotechnology, 2, 76–84. https://doi.org/10.1016/j.bcab.2012.08.005

    Article  Google Scholar 

  151. Melani, N. B., Tambourgi, E. B., & Silveira, E. (2019). Lipases: From production to applications. Separation and Purification Reviews, 49, 143–158. https://doi.org/10.1080/15422119.2018.1564328

    Article  CAS  Google Scholar 

  152. Shieh, C. J., & Chang, S. W. (2001). Optimized synthesis of lipase-catalyzed hexyl acetate in n-hexane by response surface methodology. Journal of Agriculture and Food Chemistry, 49, 1203–1207. https://doi.org/10.1021/jf001050q

    Article  CAS  Google Scholar 

  153. Sarmah, N., Revathi, D., Sheelu, G. Y., Rani, K., Sridhar, S., Mehtab, V., & Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34, 5–28. https://doi.org/10.1002/btpr.2581

    Article  CAS  PubMed  Google Scholar 

  154. Wolf, I. V., Meinardi, C. A., & Zalazar, C. A. (2009). Production of flavour compounds from fat during cheese ripening by action of lipases and esterases. Protein and Peptide Letters, 16, 1235–1243. https://doi.org/10.2174/092986609789071289

    Article  CAS  PubMed  Google Scholar 

  155. Okpara, M. O. (2022). Microbial enzymes and their applications in food industry: A mini-review. Adv. Enz. Res., 10, 23–47. https://doi.org/10.4236/aer.2022.101002

    Article  CAS  Google Scholar 

  156. Chandan, R. C. (2008). Dairy processing and quality assurance: an overview, in Dairy Processing and Quality Assurance, (Chandan, R. C. Kilara, A. and Shah, N. P., eds). Wiley. pp. 1‒40. https://doi.org/10.1002/9781118810279.ch01

  157. Ghosh, M., Sengupta, A., Bhattacharyya, D. K., & Ghosh, M. (2016). Preparation of human milk fat analogue by enzymatic interesterification reaction using palm stearin and fish oil. Journal of Food Science and Technology, 53, 2017–2024. https://doi.org/10.1007/s13197-016-2180-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ferreira-Dias, S., Osório, N. M., Rodrigues, J., & Tecelão, C. (2018). Structured lipids for foods. In L. Melton & F. Shahidi (Eds.), Encyclopedia of Food Chemistry (pp. 357–369). Elsevier, Amsterdam.

    Google Scholar 

  159. Kiran, S., Arshad, Z., Nosheen, S., Kamal, S., Gulzar, T., Majeed, M. S., Jannat, M., & Rafique, M. A. (2016). Microbial lipases: Production and applications: A review. JBCBB, 1, 7–20.

    Google Scholar 

  160. Sangeetha, R., Arulpandi, I., & Geetha, A. (2011). Bacterial lipases as potential industrial biocatalysts: An overview. Research Journal of Microbiology, 6, 1–24. https://doi.org/10.3923/jm.2011.1.24

    Article  CAS  Google Scholar 

  161. Mnif, I., Besbes, S., Ellouze, R., Ellouze-Chaabouni, S., & Ghribi, D. (2012). Improvement of bread quality and bread shelf-life by Bacillus subtilis biosurfactant addition. Food Sci. Biotechnol., 21, 1105–1112. https://doi.org/10.1007/s10068-012-0144-8

    Article  CAS  Google Scholar 

  162. Ray, A. (2012). Application of lipase in industry. Asian Journal of Pharmaceutical Technique, 2, 33–37.

    Google Scholar 

  163. Mehta, A., Guleria, S., Sharma, R., & Gupta, R. (2021). The lipases and their applications with emphasis on food industry, in Microbial biotechnology in Food and Health (Ray, R. C., ed). Academic Press pp. 143‒164. https://doi.org/10.1016/B978-0-12-819813-1.00006-2

  164. Sharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal. https://doi.org/10.1155/2014/625258

    Article  PubMed  PubMed Central  Google Scholar 

  165. Choudhury, P., & Bhunia, B. (2015). Industrial application of lipase: A review. Biopharm. J., 1, 41–47.

    Google Scholar 

  166. Anobom, C. D., Pinheiro, A. S., De-Andrade, R. A., Aguieiras, E. C., Andrade, G. C., Moura, M. V., Almeida, R. V., & Freire, D. M. (2014). From structure to catalysis: Recent developments in the biotechnological applications of lipases. BioMed Research International. https://doi.org/10.1155/2014/684506

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hasan, F., Shah, A. A., Javed, S., & Hameed, A. (2010). Enzymes used in detergents: Lipases. African Journal of Biotechnology, 9, 4836–4844. https://doi.org/10.5897/AJBx09.026

    Article  CAS  Google Scholar 

  168. Niyonzima, F. N., & More, S. S. (2015). Microbial detergent compatible lipases. Journal of Science Industrial Research, 74, 105–113.

    CAS  Google Scholar 

  169. Bora, L., Gohain, D., & Das, R. (2013). Recent advances in production and biotechnological applications of thermostable and alkaline bacterial lipases. Journal of Chemical Technology and Biotechnology, 88, 1959–1970. https://doi.org/10.1002/jctb.4170

    Article  CAS  Google Scholar 

  170. Mhya, D. H., & Mankilik, M. (2015). Bacterial enzymes: A good alternative to conventional chemicals in leather processing. International Journal of Bioscience and Nanoscience, 2, 20–23.

    Google Scholar 

  171. Lin, J. F., Lin, Q., Li, J., Fei, Z. A., Li, X. RXu., Qiao, H., & D. R. and Cao, Y. (2012). Bacterial diversity of lipase-producing strains in different soils in southwest of China and characteristics of lipase. African Journal of Microbiology, 6, 3797–3806. https://doi.org/10.5897/AJMR12.444

    Article  CAS  Google Scholar 

  172. Saran, S., Mahajan, R. V., Kaushik, R., Isar, J., & Saxena, R. K. (2013). Enzyme mediated beam house operations of leather industry: a needed step towards greener technology. Journal of Clean Production, 54, 315–322. https://doi.org/10.1016/j.jclepro.2013.04.017

    Article  CAS  Google Scholar 

  173. Mahboob, S., & TahirAli, K. S. (2022). a systematic overview on the upstreaming, downstreaming and industrial applications of microbial lipases. International Journal of Biology and Biotechnology, 19, 171–182.

    CAS  Google Scholar 

  174. Yakubu, A., Saikia, U., & Vyas, A. (2019). Microbial enzymes and their application in pulp and paper industry, in Recent advancement in white biotechnology through fungi, (Yadav, A. Singh, S. Mishra, S. and Gupta, A., eds). Cham: Springer. pp. 297‒317. https://doi.org/10.1007/978-3-030-25506-0_12

  175. Verma, S., Meghwanshi, G. K., & Kumar, R. (2021). Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie, 182, 23–36. https://doi.org/10.1016/j.biochi.2020.12.027

    Article  CAS  PubMed  Google Scholar 

  176. Matsumae, H., Furui, M., & Shibatani, T. (1993). Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of diltiazem hydrochloride. Journal of Fermentation and Bioengineering, 75, 93–98. https://doi.org/10.1016/0922-338X(93)90216-U

    Article  CAS  Google Scholar 

  177. Agobo, K. U., Arazu, V. A., Uzo, K., & Igwe, C. N. (2017). Microbial lipases: A prospect for biotechnological industrial catalysis for green products: A review. Fermented Technology, 6, 2. https://doi.org/10.4172/2167-7972.1000144

    Article  Google Scholar 

  178. Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2019). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553. https://doi.org/10.1016/j.fuel.2019.116553

    Article  CAS  Google Scholar 

  179. Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion Managagement, 63, 138–148. https://doi.org/10.1016/j.enconman.2012.02.027

    Article  CAS  Google Scholar 

  180. Stoytcheva, M., Montero, G., Toscano, L., Gochev, V., & Valdez, B. (2011). The immobilized lipases in biodiesel production, in Biodiesel: Feedstocks and Processing Technologies, (Stoytcheva, M. and Montero, G., eds). London: Intech . pp. 397‒411.

  181. Luo, Y., Zheng, Y., Jiang, Z., Ma, Y., & Wei, D. (2006). A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Applied Microbiology and Biotechnology, 73, 349–355. https://doi.org/10.1007/s00253-006-0478-3

    Article  CAS  PubMed  Google Scholar 

  182. Yücel, S. Terzioğlu, P., & Özçimen, D. (2012). Lipase applications in biodiesel production, in Biodiesel ‒ Feedstocks, Production and Applications, (Fang, Z., ed), InTech, Croatia: pp. 209‒250. https://doi.org/10.5772/52662

  183. Korman, T. P., Sahachartsiri, B., Charbonneau, D. M., Huang, G. L., Beauregard, M., & Bowie, J. U. (2013). Dieselzymes: Development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnology for Biofuels, 6, 1–13. https://doi.org/10.1186/1754-6834-6-70

    Article  CAS  Google Scholar 

  184. Pratush, A., Gupta, A., Vyas, G., & Sharma, P. (2013). Bacterial lipases: Production strategies and industrial applications. Microbiology Application, 1, 64–83.

    Google Scholar 

  185. Hartzell, M. M., & Hsieh, Y. L. (1998). Enzymatic scouring to improve cotton fabric wettability. Textile Research Journal, 68, 233–241. https://doi.org/10.1177/004051759806800401

    Article  CAS  Google Scholar 

  186. Nerurkar, M., Joshi, M., & Adivarekar, R. (2015). Bioscouring of cotton using lipase from marine bacteria Bacillus sonorensis. Applied Biochemistry and Biotechnology, 175, 253–265. https://doi.org/10.1007/s12010-014-1259-6

    Article  CAS  PubMed  Google Scholar 

  187. El-Fiky, A. F., Khalil, E. M., Mowafi, S., Zaki, R. A., & El-Sayed, H. (2021). A Novel Approach towards Removal of Lipid Barrier from Wool Fibers’ Surface Using Thermophilic Lipase. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1982835

    Article  Google Scholar 

  188. Basha, P. A. (2020). Oil degrading lipases and their role in environmental pollution, in Recent Developments in Applied Microbiology and Biochemistry, vol. 2 (Viswanath, B., ed), Academic Press: pp. 269‒277 https://doi.org/10.1016/B978-0-12-821406-0.00025-4

  189. Godfrey, T., & Reichelt, J. (1983). Industrial applications. Industrial Enzymology—Applications of Enzymes in Industry (pp. 170–465). The Nature Press.

    Google Scholar 

  190. Nimkande, V. D., & Bafana, A. (2022). A review on the utility of microbial lipases in wastewater treatment. Journal of Water Process Engineering, 46, 102591. https://doi.org/10.1016/j.jwpe.2022.102591

    Article  Google Scholar 

  191. Kumar, A., Gudiukaite, R., Gricajeva, A., Sadauskas, M., Malunavicius, V., Kamyab, H., Sharma, S., Sharma, T., & Pant, D. (2019). Microbial lipolytic enzymes–promising energy-efficient biocatalysts in bioremediation. Energy, 192, 116674. https://doi.org/10.1016/j.energy.2019.116674

    Article  CAS  Google Scholar 

  192. Riffaldi, R., Levi-Minzi, R., Cardelli, R., Palumbo, S., & Saviozzi, A. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 170, 3–15. https://doi.org/10.1007/s11270-006-6328-1

    Article  CAS  Google Scholar 

  193. Ktata, A., Krayem, N., Aloulou, A., Bezzine, S., Sayari, A., Chamkha, M., et al. (2020). Purification, biochemical and molecular study of lipase producing from a newly thermoalkaliphilic Aeribacillus pallidus for oily wastewater treatment. Journal of Biochemistry, 167, 89–99. https://doi.org/10.1093/jb/mvz083

    Article  CAS  PubMed  Google Scholar 

  194. Mohebrad, B., Ghods, G., & Rezaee, A. (2022). Dairy wastewater treatment using immobilized bacteria on calcium alginate in a microbial electrochemical system. J. Water Process Eng., 46, 102609. https://doi.org/10.1016/j.jwpe.2022.102609

    Article  Google Scholar 

  195. dos Salgado, C. A., Santos, C. A., & Vanetti, M. C. D. (2022). Microbial lipases: Propitious biocatalysts for the food industry. Food Bioscience. https://doi.org/10.1016/j.fbio.2021.101509

    Article  Google Scholar 

  196. Coelho, A. L. S., & Orlandelli, R. C. (2021). Immobilized microbial lipases in the food industry: A systematic literature review. Critical Reviews in Food Science and Nutrition, 61, 1689–1703. https://doi.org/10.1080/10408398.2020.1764489

    Article  CAS  PubMed  Google Scholar 

  197. Patel, R., Trivedi, U., & Patel, K. (2022). Lipases: An efficient biocatalyst for biotechnological applications. Journal of Microbiology, Biotechnology and Food Sciences, 11, e2498. https://doi.org/10.55251/jmbfs.2498

    Article  CAS  Google Scholar 

  198. Filho, D. G., Silva, A. G., & Guidini, C. Z. (2019). Lipases: Sources, immobilization methods, and industrial applications. Applied Microbiology and Biotechnology, 103, 7399–7423. https://doi.org/10.1007/s00253-019-10027-6

    Article  CAS  PubMed  Google Scholar 

  199. Abou Taleb, M., Gomaa, S. K., Wahba, M. I., Zaki, R., El-Fiky, A., El-Refai, A. F., & H. A. and El-Sayed, H. (2022). Bioscouring of wool fibres using immobilized thermophilic lipase. International Journal of Biological Macromolecules, 194, 800–810. https://doi.org/10.1016/j.ijbiomac.2021.11.128

    Article  CAS  Google Scholar 

  200. Ameri, A., Shakibaie, M., Khoobi, M., Faramarzi, M. A., Gholibegloo, E., Ameri, A., & Forootanfar, H. (2020). Optimization of immobilization conditions of Bacillus atrophaeus FSHM2 lipase on maleic copolymer coated amine-modified graphene oxide nano-sheets and its application for valeric acid esterification. International Journal of Biological Macromolecules, 162, 1790–1806. https://doi.org/10.1016/j.ijbiomac.2020.08.101

    Article  CAS  PubMed  Google Scholar 

  201. Uppada, S. R., Akula, M., Bhattacharya, A., & Dutta, J. R. (2017). Immobilized lipase from Lactobacillus plantarum in meat degradation and synthesis of flavor esters. Journal of Genetic Engineering & Biotechnology, 15, 331–334. https://doi.org/10.1016/j.jgeb.2017.07.008

    Article  Google Scholar 

  202. Khosla, K., Rathour, R., Maurya, R., Maheshwari, N., Gnansounou, E., Larroche, C., & Thakur, I. S. (2017). Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. Bioresource Technology, 245, 743–750. https://doi.org/10.1016/j.biortech.2017.08.194

    Article  CAS  PubMed  Google Scholar 

  203. Ölçücü, G., Klaus, O., Jaeger, K. E., Drepper, T., & Krauss, U. (2021). Emerging solutions for in vivo biocatalyst immobilization: Tailor-made catalysts for industrial biocatalysis. ACS Sustainable Chemistry & Engineering., 9, 8919–8945. https://doi.org/10.1021/acssuschemeng.1c02045

    Article  CAS  Google Scholar 

  204. Soni, S. (2021). Trends in lipase engineering for enhanced biocatalysis. Biotechnology and Applied Biochemistry, 69, 265–272. https://doi.org/10.1002/bab.2105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is carried out with the help of prestigious material from the institute’s libraries. And supported by Grant No. 43/ORIC/19 from the office of research innovation & commercialization (ORIC).

Funding

No funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Akram.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. We assure the integrity and quality of our research work. It is also stated that there is no plagiarism in this work and all points taken from other authors are well cited in the text. This study is completely independent and impartial. The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

N/A. This research did not involve human participants and/or animals.

Informed Consent

N/A. This research did not involve human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, F., Mir, A.S., Haq, I.u. et al. An Appraisal on Prominent Industrial and Biotechnological Applications of Bacterial Lipases. Mol Biotechnol 65, 521–543 (2023). https://doi.org/10.1007/s12033-022-00592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00592-z

Keywords

Navigation