Skip to main content
Log in

A Low-Affinity K+ Transporter AlHKT2;1 from Recretohalophyte Aeluropus lagopoides Confers Salt Tolerance in Yeast

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The high-affinity potassium transporters (HKT) are highly important for stress tolerance in plants as they uniquely maintain K+/Na+ ratio for their survival and growth. In this study a novel HKT gene AlHKT2;1 was isolated and characterized from salt secreting halophyte, Aeluropus lagopoides. The AlHKT2;1 cDNA comprised of an open reading frame of 1,581 bp, encoding a protein of 526 amino acid residues. It belongs to class II HKTs and showed high homology with other HKT genes. Functional characterization of AlHKT2;1 in both K+ uptake‐deficient (WΔ6) and Na+-sensitive yeast mutants (G19) showed the characteristic feature of low-affinity K+ transporter supporting the growth at >1 mM KCl concentration. The transformed yeast cells showed high sensitivity to NaCl; however, the addition of KCl along with NaCl support the growth of AlHKT2;1 expressing mutant. Ion content analysis of yeast cells with AlHKT2;1 grown in high NaCl medium supplemented with KCl revealed that salt tolerance was correlated with accumulation of K+ during salt stress. These results suggest that AlHKT2;1 plays an important role in the K+ uptake during salt stress and in maintaining a high K+/Na+ ratio in the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, E., & Shin, R. (2014). Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology, 56, 231–249.

    Article  CAS  Google Scholar 

  2. Maser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., et al. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126, 1646–1667.

    Article  CAS  Google Scholar 

  3. Maser, P., Gierth, M., & Schroeder, J. I. (2002). Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil, 247, 43–54.

    Article  Google Scholar 

  4. Almeida, P., Katschnig, D., & de Boer, A. H. (2013). HKT transporters-state of the art. International Journal of Molecular Sciences, 14, 20359–20385.

    Article  Google Scholar 

  5. Platten, J. D., Cotsaftis, O., Berthomieu, P., Bohnert, H., Davenport, R. J., Fairbairn, D. J., et al. (2006). Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 11, 372–374.

    Article  CAS  Google Scholar 

  6. Maser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., et al. (2002). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences of the United States of America, 99, 6428–6433.

    Article  CAS  Google Scholar 

  7. Ali, Z., Park, H. C., Ali, A., Oh, D. H., Aman, R., Kropornicka, A., et al. (2012). TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiology, 158, 1463–1474.

    Article  CAS  Google Scholar 

  8. Takahashi, R., Liu, S., & Takano, T. (2007). Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. Journal of Experimental Botany, 58, 4387–4395.

    Article  CAS  Google Scholar 

  9. Ardie, S. W., Xie, L., Takahashi, R., Liu, S., & Takano, T. (2009). Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. Journal of Experimental Botany, 60, 3491–3502.

    Article  CAS  Google Scholar 

  10. Gulzar, S., & Khan, M. A. (2001). Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany, 87, 319–324.

    Article  Google Scholar 

  11. Mohsenzadeh, S., Malboobi, M. A., Razavi, K., & Farrahi-Aschtiani, S. (2006). Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environmental and Experimental Botany, 56, 314–322.

    Article  CAS  Google Scholar 

  12. Sobhanian, H., Motamed, N., Jazii, F. R., Nakamura, T., & Komatsu, S. (2010). Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a Halophyte C-4 Plant. Journal of Proteome Research, 9, 2882–2897.

    Article  CAS  Google Scholar 

  13. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347, 1–32.

    Google Scholar 

  14. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  15. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  16. Omasits, U., Ahrens, C. H., Muller, S., & Wollscheid, B. (2014). Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 30, 884–886.

    Article  CAS  Google Scholar 

  17. Haro, R., & Rodriguez-Navarro, A. (2003). Functional analysis of the M2(D) helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1613, 1–6.

    Article  CAS  Google Scholar 

  18. Quintero, F. J., Garciadeblas, B., & Rodriguez-Navarro, A. (1996). The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell, 8, 529–537.

    CAS  Google Scholar 

  19. Brunelli, J. P., & Pall, M. L. (1993). A series of yeast/Escherichia coli λ expression vectors designed for directional cloning of cDNAs and cre/lox-mediated plasmid excision. Yeast, 9, 1309–1318.

    Article  CAS  Google Scholar 

  20. Gietz, D., Stjean, A., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20, 1425.

    Article  CAS  Google Scholar 

  21. Rodriguez-Navarro, A., & Ramos, J. (1984). Dual system for potassium transport in Saccharomyces cerevisiae. Journal of Bacteriology, 159, 940–945.

    CAS  Google Scholar 

  22. Durell, S. R., & Guy, H. R. (1999). Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophysical Journal, 77, 789–807.

    Article  CAS  Google Scholar 

  23. Durell, S. R., Hao, Y. L., Nakamura, T., Bakker, E. P., & Guy, H. R. (1999). Evolutionary relationship between K+ channels and symporters. Biophysical Journal, 77, 775–788.

    Article  CAS  Google Scholar 

  24. Kato, Y., Sakaguchi, M., Mori, Y., Saito, K., Nakamura, T., Bakker, E. P., et al. (2001). Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proceedings of the National Academy of Sciences of the United States of America, 98, 6488–6493.

    Article  CAS  Google Scholar 

  25. Kato, N., Akai, M., Zulkifli, L., Matsuda, N., Kato, Y., Goshima, S., et al. (2007). Role of positively charged amino acids in the M2(D) transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels, 1, 161–171.

    Article  Google Scholar 

  26. Gassmann, W., Rubio, F., & Schroeder, J. I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant Journal, 10, 869–882.

    Article  CAS  Google Scholar 

  27. Corratge-Faillie, C., Jabnoune, M., Zimmermann, S., Very, A. A., Fizames, C., & Sentenac, H. (2010). Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cellular and Molecular Life Sciences, 67, 2511–2532.

    Article  CAS  Google Scholar 

  28. Rubio, F., Gassmann, W., & Schroeder, J. I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 270, 1660–1663.

    Article  CAS  Google Scholar 

  29. Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., et al. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology, 122, 1249–1259.

    Article  CAS  Google Scholar 

  30. Sassi, A., Mieulet, D., Khan, I., Moreau, B., Gaillard, I., Sentenac, H., & Very, A. A. (2012). The rice monovalent cation transporter OsHKT2;4: revisited ionic selectivity. Plant Physiology, 160, 498–510.

    Article  CAS  Google Scholar 

  31. Schachtman, D. P., & Schroeder, J. I. (1994). Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 370, 655–658.

    Article  CAS  Google Scholar 

  32. Horie, T., Sugawara, M., Okunou, K., Nakayama, H., Schroeder, J. I., Shinmyo, A., & Yoshida, K. (2008). Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress. Plant Biotechnology, 25, 233–239.

    Article  CAS  Google Scholar 

  33. Rubio, F., Schwarz, M., Gassmann, W., & Schroeder, J. I. (1999). Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. Journal of Biological Chemistry, 274, 6839–6847.

    Article  CAS  Google Scholar 

  34. Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., & Shinmyo, A. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant Journal, 27, 129–138.

    Article  CAS  Google Scholar 

  35. Corratge, C., Zimmermann, S., Lambilliotte, R. R. L., Plassard, C., Marmeisse, R., Thibaud, J. B., et al. (2007). Molecular and functional characterization of a Na+–K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. Journal of Biological Chemistry, 282, 26057–26066.

    Article  CAS  Google Scholar 

  36. Garciadeblas, B., Senn, M. E., Banuelos, M. A., & Rodriguez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. Plant Journal, 34, 788–801.

    Article  CAS  Google Scholar 

  37. Golldack, D., Su, H., Quigley, F., Kamasani, U. R., Munoz-Garay, C., Balderas, E., et al. (2002). Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant Journal, 31, 529–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Communication No. 185 as provided by BDIM. We are grateful to Dr Alonso Rodriguez-Navarro, Universidad Politecnica de Madrid, Spain, for kindly providing us with the WΔ6, W303.1A and G19 yeast strains and for the helpful discussions. The financial assistance from CSIR (OLP 0067) is greatly acknowledged. PA is thankful for Sennior Research Associateship (CSIR Scientists’ Pool Scheme). PS and JK are thankful to CSIR for Senior Research Fellowship and Junior Research Fellowship, respectively and AcSIR for enrolment in Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Agarwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (PPTX 806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanadhya, P., Agarwal, P., Khedia, J. et al. A Low-Affinity K+ Transporter AlHKT2;1 from Recretohalophyte Aeluropus lagopoides Confers Salt Tolerance in Yeast. Mol Biotechnol 57, 489–498 (2015). https://doi.org/10.1007/s12033-015-9842-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9842-9

Keywords

Navigation