Skip to main content
Log in

Use of Synthetic Genes for Cloning, Production and Functional Expression of the Bacteriocins Enterocin A and Bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Denis-Quanquin, S., Lamouroux, L., Lougarre, A., Mahéo, S., Saves, I., Paquereau, L., et al. (2007). Protein expression from synthetic genes: Selection of clones using GFP. Journal of Biotechnology, 131, 223–230.

    Article  CAS  Google Scholar 

  2. Gao, Z., Li, Z., Zhang, Y., Huang, H., Li, M., Zhou, L., et al. (2012). High-level expression of the Penicillum notatum glucose oxidase gene in Pichia pastoris using codon usage optimization. Biotechnology Letters, 34, 507–514.

    Article  CAS  Google Scholar 

  3. Öberg, F., Sjöhman, J., Conner, M. T., Bill, R. M., & Hedfalk, K. (2011). Improving recombinant eukaryotic membrane protein yields in Pichia pastoris: The importance of codon optimization and clone selection. Molecular Membrane Biology, 28, 398–411.

    Article  CAS  Google Scholar 

  4. Ward, N. J., Buckley, S. M., Waddington, S. N., Van den Driesche, T., Chuah, M. K., Nathwani, A. C., et al. (2011). Codon optimization of human factor VIII cDNAs leads to high level expression. Blood, 117, 798.

    Article  CAS  Google Scholar 

  5. Borrero, J., Jiménez, J. J., Gútiez, L., Herranz, C., Cintas, L. M., & Hernández, P. E. (2011). Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. Journal of Biotechnology, 156, 76–86.

    Article  CAS  Google Scholar 

  6. Montalbán-López, M., Sánchez-Hidalgo, M., Valdivia, E., Martínez-Bueno, M., & Maqueda, M. (2011). Are bacteriocins underexploited? Novel applications for old antimicrobials. Current Pharmaceutical Biotechnology, 12, 1205–1220.

    Article  Google Scholar 

  7. Franz, C. M., van Belkum, M. J., Holzapfel, W. H., Abriouel, H., & Gálvez, A. (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiology Reviews, 31, 293–310.

    Article  CAS  Google Scholar 

  8. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.

    Article  CAS  Google Scholar 

  9. Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., & Prévost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews, 70, 564–582.

    Article  CAS  Google Scholar 

  10. Nes, I. F., Yoon, S. S., & Diep, D. B. (2007). Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: A review. Food Science and Biotechnology, 16, 675–690.

    CAS  Google Scholar 

  11. Kjos, M., Borrero, J., Opsata, M., Birri, D. J., Holo, H., Cintas, L. M., et al. (2011). Target recognition, resistance, immunity and genome mining of class II bacteriocins from gram-positive bacteria. Microbiology, 157, 3256–3267.

    Article  CAS  Google Scholar 

  12. Gutiérrez, J., Larsen, R., Cintas, L. M., Kok, J., & Hernández, P. E. (2006). High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis. Applied Microbiology and Biotechnology, 72, 41–51.

    Article  CAS  Google Scholar 

  13. Nilsen, T., Nes, I. F., & Holo, H. (1998). An exported inducer regulates bacteriocin production in Enterococcus faecium CTC492. Journal of Bacteriology, 180, 1848–1854.

    CAS  Google Scholar 

  14. O’Keefee, T., Hill, C., & Ross, R. P. (1999). Characterization and heterologous expression of the genes encoding enterocin A production, immunity and regulation in Enterococcus faecium DPC1146. Applied and Environment Microbiology, 65, 1506–1515.

    Google Scholar 

  15. Borrero, J., Kunze, G., Jiménez, J. J., Böer, E., Gútiez, L., Herranz, C., et al. (2012). Cloning, production and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha and Arxula adeninivorans. Applied and Environment Microbiology, 78, 5956–5961.

    Article  CAS  Google Scholar 

  16. Hoang, K. V., Stern, N. J., & Lin, J. (2011). Development and stability of bacteriocin resistance in Campylobacter spp. Journal of Applied Microbiology, 111, 1544–1550.

    Article  CAS  Google Scholar 

  17. Messaoudi, S., Kergourlay, G., Dalgarrondo, M., Choiset, Y., Ferchichi, M., Prevost, H., et al. (2012). Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51. Food Microbiology, 32, 129–134.

    Article  CAS  Google Scholar 

  18. Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., Borzenkov, V. N., et al. (2008). Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. Journal of Agricultural and Food Chemistry, 56, 1942–1948.

    Article  CAS  Google Scholar 

  19. Svetoch, E. A., Levchuk, V. P., Pokhilenko, V. D., Eruslanov, B. V., Mitsevich, E. V., Mitsevich, I. P., et al. (2008). Inactivating methicillin-resistant Staphylococcus aureus and other pathogens by use of bacteriocins OR-7 and E 50-52. Journal of Clinical Microbiology, 46, 3863–3865.

    Article  Google Scholar 

  20. Svetoch, E. A., Eruslanov, B. V., Kovalev, Y. N., Mitsevich, E. V., Mitsevich, I. P., Levchuck, V. P., et al. (2009). Antimicrobial activities of bacteriocins E 50-52 and B 602 against antibiotic-resistant strains involved in nosocomial infections. Probiotics and Antimicrobial Proteins, 1, 136–142.

    Article  CAS  Google Scholar 

  21. Svetoch, E. A., & Stern, N. J. (2010). Bacteriocins to control Campylobacter spp. in poultry—A review. Poultry Science, 89, 1763–1768.

    Article  CAS  Google Scholar 

  22. Casaus, P., Nilsen, T., Cintas, L. M., Nes, I. F., Hernández, P. E., & Holo, H. (1997). Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology, 143, 2287–2294.

    Article  CAS  Google Scholar 

  23. Aymerich, T., Holo, H., Håvarstein, L. S., Hugas, M., Garriga, M., & Nes, I. F. (1996). Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin-family of bacteriocins. Applied and Environment Microbiology, 62, 1676–1682.

    CAS  Google Scholar 

  24. Gutiérrez, J., Criado, R., Martín, M., Herranz, C., Cintas, L. M., & Hernández, P. E. (2005). Production of enterocin P, an antilisterial pediocin-like bacteriocin from Enterococcus faecium P13, in Pichia pastoris. Antimicrobial Agents and Chemotherapy, 49, 3004–3008.

    Article  CAS  Google Scholar 

  25. Sánchez, J., Diep, D. B., Herranz, C., Nes, I. F., Cintas, L. M., & Hernández, P. E. (2007). Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a Sec-dependent bacteriocin produced by Enterococcus hirae DCH5, isolated from Mallard ducks (Anas platyrhynchos). FEMS Microbiology Letters, 270, 227–236.

    Article  CAS  Google Scholar 

  26. van Ooyen, A. J. J., Dekker, P., Huang, M., Olsthoorn, M. M. A., Jacobs, D. I., Colussi, P. A., et al. (2006). Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Research, 6, 381–392.

    Article  CAS  Google Scholar 

  27. Böer, E., Steinborn, G., Kunze, G., & Gellissen, G. (2007). Yeast expression platforms. Applied Microbiology and Biotechnology, 77, 513–523.

    Article  CAS  Google Scholar 

  28. Richard, C., Drider, D., Elmorjani, K., Marion, D., & Prevost, H. (2004). Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. Journal of Bacteriology, 186, 4276–4284.

    Article  CAS  Google Scholar 

  29. Acuña, L., Picariello, G., Sesma, F., Morero, R. D., & Bellomio, A. (2012). A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio, 2, 12–19.

    Article  CAS  Google Scholar 

  30. Cregg, J. M., Cereghino, J. L., Shi, J., & Higins, D. R. (2000). Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 16, 23–52.

    Article  CAS  Google Scholar 

  31. Colussi, P. A., & Taron, C. H. (2005). Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Applied and Environment Microbiology, 71, 7092–7098.

    Article  CAS  Google Scholar 

  32. Le Loir, Y., Gruss, A., Ehrlich, D., & Langella, P. (1998). A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. Journal of Bacteriology, 180, 1895–1903.

    Google Scholar 

  33. Schoeman, H., Vivier, M. A., du Toit, M., Dicks, L. M. T., & Pretorius, I. S. (1999). The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast, 15, 647–656.

    Article  CAS  Google Scholar 

  34. van Reenen, C. A., Chikindas, M. L., van Zyl, W. H., & Dicks, L. M. T. (2002). Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. International Journal of Food Microbiology, 81, 29–40.

    Article  Google Scholar 

  35. Basanta, A., Herranz, C., Gutiérrez, J., Criado, R., Hernández, P. E., & Cintas, L. M. (2009). Development of bacteriocinogenic strains of Saccharomyces cerevisiae heterologously expressing and secreting the leaderless enterocin L50 peptides L50A and L50B from Enterococcus faecium L50. Applied and Environment Microbiology, 75, 2382–2392.

    Article  CAS  Google Scholar 

  36. Beaulieu, L., Groleau, D., Míguez, C. B., Jetté, J. F., Aomari, H., & Subirade, M. (2005). Production of pediocin PA-1 in the methylotrophic yeast Pichia pastoris reveals unexpected inhibition of its biological activity due to the presence of collagen-like material. Protein Expression and Purification, 43, 111–125.

    Article  CAS  Google Scholar 

  37. Sánchez, J., Borrero, J., Gómez-Sala, B., Basanta, A., Herranz, C., Cintas, L. M., et al. (2008). Cloning and heterologous production of hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae, in lactic acid bacteria and Pichia pastoris. Applied and Environment Microbiology, 74, 2471–2479.

    Article  CAS  Google Scholar 

  38. Basanta, A., Gómez-Sala, B., Sánchez, J., Dzung, B. D., Herranz, C., Hernández, P. E., et al. (2010). Use of the yeast Pichia pastoris as an expression host for secretion of enterocin L50, a leaderless two-peptide (L50A and L50B) bacteriocin from Enterococcus faecium L50. Applied and Environment Microbiology, 76, 3314–3324.

    Article  CAS  Google Scholar 

  39. Martín, M., Gutiérrez, J., Criado, R., Herranz, C., Cintas, L. M., & Hernández, P. E. (2007). Chimeras of mature pediocin PA-1 fused to the signal peptide of enterocin P permits the cloning, production, and expression of pediocin PA-1 in Lactococcus lactis. Journal of Food Protection, 70, 2792–2798.

    Google Scholar 

  40. Martín, M., Gutiérrez, J., Criado, R., Herranz, C., Cintas, L. M., & Hernández, P. E. (2007). Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Applied Microbiology and Biotechnology, 76, 667–675.

    Article  CAS  Google Scholar 

  41. Borrero, J., Jiménez, J. J., Gútiez, L., Herranz, C., Cintas, L. M., & Hernández, P. E. (2011). Use of the usp45 lactococcal secretion sequence signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Applied Microbiology and Biotechnology, 89, 131–143.

    Article  CAS  Google Scholar 

  42. Borrero, J., Brede, D. A., Skaugen, M., Diep, D. B., Herranz, C., Nes, I. F., et al. (2011). Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Applied and Environment Microbiology, 77, 369–373.

    Article  CAS  Google Scholar 

  43. Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M., Rodríguez-Carmona, E., Baumann, K., et al. (2008). Protein folding and conformational stress in microbial cells producing recombinant proteins: A host comparative overview. Microbial Cell Factories, 4, 7–11.

    Google Scholar 

  44. Zhao, Y., & Jensen, O. N. (2009). Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics, 9, 4362–4641.

    Google Scholar 

  45. Eijsink, V. G. H., Skeie, M., Middelhoven, P. H., Brurberg, M. B., & Nes, I. F. (1998). Comparative studies of class II bacteriocins of lactic acid bacteria. Applied and Environment Microbiology, 64, 3275–3281.

    CAS  Google Scholar 

  46. Zerbs, S., Frank, A. M., & Collart, F. R. (2009). Bacterial systems for production of heterologous proteins. Methods in Enzymology, 463, 149–168.

    Article  CAS  Google Scholar 

  47. Katla, T., Naterstad, K., Vancanneyt, M., Swings, J., & Axelsson, L. (2003). Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Applied and Environment Microbiology, 69, 4431–4437.

    Article  CAS  Google Scholar 

  48. Diep, D. B., Skaugen, M., Salehian, Z., Holo, H., & Nes, I. F. (2007). Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proceedings of the National Academy of Sciences of the United States of America, 104, 2384–2389.

    Article  CAS  Google Scholar 

  49. Cintas, L. M., Casaus, P., Håvarstein, L. S., Hernández, P. E., & Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environment Microbiology, 63, 4321–4330.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by projects AGL2012-34829 from the Ministerio de Economía y Competitividad (MINECO) and AGL2009-08348 from the Ministerio de Ciencia e Innovación (MICINN), by project GR35-10A from the Banco de Santander Central Hispano-Universidad Complutense de Madrid (BSCH-UCM), and by project S2009/AGR-1489 from the Comunidad de Madrid (CAM). J.J. Jiménez and S. Arbulu are recipient of fellowships (FPI) from the MICINN. J. Borrero held a research contract from the CAM, and L. Gútiez holds a fellowship (FPU) from the Ministerio de Educación y Ciencia (MEC), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo E. Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, J.J., Borrero, J., Gútiez, L. et al. Use of Synthetic Genes for Cloning, Production and Functional Expression of the Bacteriocins Enterocin A and Bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis . Mol Biotechnol 56, 571–583 (2014). https://doi.org/10.1007/s12033-014-9731-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9731-7

Keywords

Navigation