Skip to main content
Log in

A Comparative Study of Nitrilases Identified by Genome Mining

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli strains expressing different nitrilases transformed nitriles or KCN. Six nitrilases (from Aspergillus niger (2), A. oryzae, Neurospora crassa, Arthroderma benhamiae, and Nectria haematococca) were arylacetonitrilases, two enzymes (from A. niger and Penicillium chrysogenum) were cyanide hydratases and the others (from P. chrysogenum, P. marneffei, Gibberella moniliformis, Meyerozyma guilliermondi, Rhodococcus rhodochrous, and R. ruber) preferred (hetero)aromatic nitriles as substrates. Promising nitrilases for the transformation of industrially important substrates were found: the nitrilase from R. ruber for 3-cyanopyridine, 4-cyanopyridine and bromoxynil, the nitrilases from N. crassa and A. niger for (R,S)-mandelonitrile, and the cyanide hydratase from A. niger for KCN and 2-cyanopyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

aa:

Amino acid

NitAb:

Nitrilase from Arthroderma benhamiae CBS 112371 (GenBank: EFE30690)

NitAn:

Nitrilase from Aspergillus niger CBS 513.88 (GenBank: CAK46742)

NitAn1:

Nitrilase from Aspergillus niger K10 (CCF 3411 GenBank: ABX75546)

NitAn2:

Nitrilase from Aspergillus niger CBS 513.88 (GenBank: CAK47246)

NitAo:

Nitrilase from Aspergillus oryzae RIB40 (GenBank: BAE63579)

NitGm:

Nitrilase from Giberella moniliformis (GenBank: ABF83489)

NitMg:

Nitrilase from Meyerozyma guilliermondi (Pichia guilliermondi) ATCC 6260 (NCBI Reference Sequence: XP_001482890)

NitNc:

Nitrilase from Neurospora crassa OR74A (GenBank: CAD70472)

NitNh:

Nitrilase from Nectria haematococca mpVI 77-13-4 (GenBank: EEU45207)

NitPc1:

Nitrilase from Penicillium chrysogenum Wisconsin 54-1255 (NCBI Reference Sequence: XP_002562104)

NitPc2:

Nitrilase from Penicillium chrysogenum Wisconsin 54-1255 (NCBI Reference Sequence: XP_002565836)

NitPm:

Nitrilase from Penicillium marneffei ATCC18224 (NCBI Reference Sequence: XP_002144951)

NitRr1:

T365S/L366I variant of nitrilase from Rhodococcus ruber PA-34 (EMBL Bank: HF543938)

NitRr2:

T365S/L366I variant of nitrilase from Rhodococcus ruber NHB-2 (EMBL Bank: HF543939)

NitRr3:

T365S/L366I variant of nitrilase from Rhodococcus rhodochrous NDB 1165 (EMBL Bank: HF543940)

References

  1. Thimann, K. V., & Mahadevan, S. (1964). Nitrilase I. Occurrence, preparation and general properties of enzyme. Archives of Biochemistry and Biophysics, 105, 133–141.

    Article  CAS  Google Scholar 

  2. O’Reilly, C., & Turner, P. D. (2003). The nitrilase family of CN hydrolysing enzymes—a comparative study. Journal of Applied Microbiology, 95, 1161–1174.

    Article  Google Scholar 

  3. Thuku, R. N., Brady, D., Benedik, M. J., & Sewell, B. T. (2009). Microbial nitrilases: versatile, spiral forming, industrial enzymes. Journal of Applied Microbiology, 106, 703–727.

    Article  CAS  Google Scholar 

  4. Martínková, L., & Křen, V. (2010). Biotransformations with nitrilases. Current Opinion in Chemical Biology, 14, 130–137.

    Article  Google Scholar 

  5. Kobayashi, M., & Shimizu, S. (1994). Versatile nitrilases: Nitrile-hydrolysing enzymes. FEMS Microbiology Letters, 120, 217–223.

    Article  CAS  Google Scholar 

  6. Raczynska, J. E., Vorgias, C. E., Antranikian, G., & Rypniewski, W. (2011). Crystallographic analysis of a thermoactive nitrilase. Journal of Structural Biology, 173, 294–302.

    Article  CAS  Google Scholar 

  7. Yeom, S.-J., Kim, H.-J., Lee, J.-K., Kim, D.-E., & Oh, D.-K. (2008). An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochemical Journal, 415, 401–407.

    Article  CAS  Google Scholar 

  8. Seffernick, J. L., Samanta, S. K., Louie, T. M., Wackett, L. P., & Subramanian, M. (2009). Investigative mining of sequence data for novel enzymes: A case study with nitrilases. Journal of Biotechnology, 143, 17–26.

    Article  CAS  Google Scholar 

  9. Robertson, D. E., Chaplin, J. A., DeSantis, G., Podar, M., Madden, M., Chi, E., et al. (2004). Exploring nitrilase sequence space for enantioselective catalysis. Applied and Environmental Microbiology, 70, 2429–2436.

    Article  CAS  Google Scholar 

  10. Kaplan, O., Bezouška, K., Malandra, A., Veselá, A. B., Petříčková, A., Felsberg, J., et al. (2011). Genome mining for the discovery of new nitrilases in filamentous fungi. Biotechnology Letters, 33, 309–312.

    Article  CAS  Google Scholar 

  11. Petříčková, A., Veselá, A. B., Kaplan, O., Kubáč, D., Uhnáková, B., Malandra, A., et al. (2012). Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Applied Microbiology and Biotechnology, 93, 1553–1561.

    Article  Google Scholar 

  12. Veselá, A. B., Petříčková, A., Weyrauch, P., & Martínková, L. (2012). Heterologous expression, purification and characterization of arylacetonitrilases from Nectria haematococca and Arthroderma benhamiae. Biocatalysis and Biotransformation,. doi:10.3109/10242422.2012.758117.

    Google Scholar 

  13. Komeda, H., Hori, Y., Kobayashi, M., & Shimizu, S. (1996). Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proceedings of the National Academy of Sciences of the United States of America, 93, 10572–10577.

    Article  CAS  Google Scholar 

  14. Bhalla, T. C., Miura, A., Wakamoto, A., Ohba, Y., & Furuhashi, K. (1992). Asymmetric hydrolysis of alpha aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Applied Microbiology and Biotechnology, 37, 184–190.

    Article  CAS  Google Scholar 

  15. Bhalla, T. C., & Kumar, H. (2005). Nocardia globerula NHB-2: A versatile nitrile-degrading organism. Canadian Journal of Microbiology, 51, 705–708.

    Article  CAS  Google Scholar 

  16. Prasad, S., Misra, A., Jangir, V. P., Awasthi, A., Raj, J., & Bhalla, T. C. (2007). A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World Journal of Microbiology and Biotechnology, 23, 345–353.

    Article  CAS  Google Scholar 

  17. Veselá, A. B., Pelantová, H., Šulc, M., Macková, M., Lovecká, P., Thimová, M., et al. (2012). Biotransformation of benzonitrile herbicides via the nitrile hydratase-amidase pathway in rhodococci. Journal of Industrial Microbiology and Biotechnology, 39, 1811–1819.

    Article  Google Scholar 

  18. Bhalla, T. C., Aoshima, M., Misawa, S., Muramatsu, R., & Furuhashi, K. (1995). The molecular cloning and sequencing of the nitrilase gene of Rhodococcus rhodochrous PA-34. Acta Biotechnologica, 15, 297–306.

    Article  CAS  Google Scholar 

  19. Nagasawa, T., Mauger, J., & Yamada, H. (1990). A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. European Journal of Biochemistry, 194, 765–772.

    Article  CAS  Google Scholar 

  20. Yamamoto, K., Fujimatsu, I., & Komatsu, K.-I. (1992). Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. Journal of Fermentation and Bioengineering, 73, 425–430.

    Article  CAS  Google Scholar 

  21. Zhang, Z.-J., Xu, J.-H., He, Y.-C., Ouyang, L.-M., & Liu, Y.-Y. (2011). Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(-)-mandelic acid production. Bioprocess and Biosystems Engineering, 34, 315–322.

    Article  CAS  Google Scholar 

  22. Banerjee, A., Dubey, S., Kaul, P., Barse, B., Piotrowski, M., & Banerjee, U. C. (2009). Enantioselective nitrilase from Pseudomonas putida. Cloning, heterologous expression, and bioreactor studies. Molecular Biotechnology, 41, 35–41.

    Article  CAS  Google Scholar 

  23. Kiziak, C., Conradt, D., Stolz, A., Mattes, R., & Klein, J. (2005). Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology, 151, 3639–3648.

    Article  CAS  Google Scholar 

  24. Chmura, A., Shapovalova, A. A., van Pelt, S., van Rantwijk, F., Tourova, T. P., Muyzer, G., et al. (2008). Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils. Applied Microbiology and Biotechnology, 81, 371–378.

    Article  CAS  Google Scholar 

  25. Zhu, D., Mukherjee, C., Yang, Y., Rios, B. E., Gallagher, D. T., Smith, N. N., et al. (2008). A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity. Journal of Biotechnology, 133, 327–333.

    Article  CAS  Google Scholar 

  26. Kiziak, C., Klein, J., & Stolz, A. (2007). Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Engineering, Design & Selection, 20, 385–396.

    Google Scholar 

  27. Kiziak, C., & Stolz, A. (2009). Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Applied and Environmental Microbiology, 75, 5592–5599.

    Google Scholar 

  28. Thuku, R. N., Weber, B. W., Varsani, A., & Sewell, B. T. (2007). Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS Journal, 274, 2099–2108.

    Article  CAS  Google Scholar 

  29. Luo, H., Fan, L., Chang, Y. H., Ma, J. W., Yu, H. M., & Shen, Z. Y. (2010). Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Applied Biochemistry and Biotechnology, 160, 393–400.

    Article  CAS  Google Scholar 

  30. Goldlust, A., & Bohak, Z. (1989). Induction, purification, and characterization of the nitrilase of Fusarium oxysporum f. sp. melonis. Biotechnology and Applied Biochemistry, 11, 581–601.

    CAS  Google Scholar 

  31. Basile, L. J., Willson, R. C., Sewell, B. T., & Benedik, M. J. (2008). Genome mining of cyanide-degrading nitrilases from filamentous fungi. Applied Microbiology and Biotechnology, 80, 427–435.

    Article  CAS  Google Scholar 

  32. Almatawah, Q. A., Cramp, R., & Cowan, D. A. (1999). Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles, 3, 283–291.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported via projects P504/11/0394 (Czech Science Foundation), TA01021368 (Technology Agency of the Czech Republic) and internal project RVO61388971 (Institute of Microbiology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Martínková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2013_9656_MOESM1_ESM.doc

Supplemental file 1 Nucleotide sequences of the nitrilase genes adapted for expression in Escherichia coli using the Generay (Shanghai, China) software (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, O., Veselá, A.B., Petříčková, A. et al. A Comparative Study of Nitrilases Identified by Genome Mining. Mol Biotechnol 54, 996–1003 (2013). https://doi.org/10.1007/s12033-013-9656-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9656-6

Keywords

Navigation