Skip to main content
Log in

Tell Me a Tale of TALEs

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pathogenic bacteria of the Xanthomonas and Ralstonia genus have developed resourceful strategies creating a favorable environment to multiply and colonize their host plants. One of these strategies involves the secretion and translocation of several families of effector proteins into the host cell. The transcription activator-like effector (TALE) family forms a subset of proteins involved in the direct modulation of host gene expression. TALEs include a number of tandem 34-amino acid repeats in their central part, where specific residues variable in two adjacent positions determine DNA-binding in the host genome. The specificity of this binding and its predictable nature make TALEs a revolutionary tool for gene editing, functional analysis, modification of target gene expression, and directed mutagenesis. Several examples have been reported in higher organisms as diverse as plants, Drosophila, zebrafish, mouse, and even human cells. Here, we summarize the functions of TALEs in their natural context and the biotechnological perspectives of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11, 539–548.

    Article  CAS  Google Scholar 

  2. Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host–microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  CAS  Google Scholar 

  3. Bonas, U., & Van den Ackerveken, G. (1999). Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Current Opinion in Microbiology, 2, 94–98.

    Article  CAS  Google Scholar 

  4. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  Google Scholar 

  5. Block, A., Li, G., Fu, Z. Q., & Alfano, J. R. (2008). Phytopathogen type III effector weaponry and their plant targets. Current Opinion in Plant Biology, 11, 396–403.

    Article  CAS  Google Scholar 

  6. Abramovitch, R. B., Anderson, J. C., & Martin, G. B. (2006). Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology , 7, 601–611.

    Article  CAS  Google Scholar 

  7. Block, A., & Alfano, J. R. (2011). Plant targets for Pseudomonas syringae type III effectors: Virulence targets or guarded decoys? Current Opinion in Microbiology, 14, 39–46.

    Article  CAS  Google Scholar 

  8. Li, H., Xu, H., Zhou, Y., Zhang, J., Long, C., Li, S., et al. (2007). The phosphothreonine lyase activity of a bacterial type III effector family. Science, 315, 1000–1003.

    Article  CAS  Google Scholar 

  9. Wang, Y., Li, J., Hou, S., Wang, X., Li, Y., Ren, D., et al. (2010). A Pseudomonas syringae ADP-ribosyltransferase inhibits arabidopsis mitogen-activated protein kinase kinases. Plant Cell, 22, 2033–2044.

    Article  CAS  Google Scholar 

  10. Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., et al. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host and Microbe, 1, 175–185.

    Article  CAS  Google Scholar 

  11. Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., et al. (2012). Disruption of PAMP-Induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host and Microbe, 11, 253–263.

    Article  CAS  Google Scholar 

  12. Jelenska, J., Yao, N., Vinatzer, B. A., Wright, C. M., Brodsky, J. L., & Greenberg, J. T. (2007). A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Current Biology, 17, 499–508.

    Article  CAS  Google Scholar 

  13. Kim, J. G., Li, X., Roden, J. A., Taylor, K. W., Aakre, C. D., Su, B., et al. (2009). Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell, 21, 1305–1323.

    Article  CAS  Google Scholar 

  14. Canonne, J., Marino, D., Jauneau, A., Pouzet, C., Briere, C., Roby, D., et al. (2011). The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell, 23, 3498–3511.

    Article  CAS  Google Scholar 

  15. Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annual review of Phytopathology, 48, 419–436.

    Article  CAS  Google Scholar 

  16. Saijo, Y., & Schulze-Lefert, P. (2008). Manipulation of the eukaryotic transcriptional machinery by bacterial pathogens. Cell Host and Microbe, 4, 96–99.

    Article  CAS  Google Scholar 

  17. Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333, 1843.

    Article  CAS  Google Scholar 

  18. White, F. F., & Yang, B. (2009). Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiology, 150, 1677–1686.

    Article  CAS  Google Scholar 

  19. Yang, B., & White, F. F. (2004). Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Molecular Plant-Microbe Interactions, 17, 1192–1200.

    Article  CAS  Google Scholar 

  20. Yang, B., Sugio, A., & White, F. F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences of the United States of America, 103, 10503–10508.

    Article  CAS  Google Scholar 

  21. Yang, Y., Yuan, Q., & Gabriel, D. W. (1996). Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Molecular Plant-Microbe Interactions, 9, 105–113.

    Article  CAS  Google Scholar 

  22. Kay, S., Hahn, S., Marois, E., Hause, G., & Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 318, 648–651.

    Article  CAS  Google Scholar 

  23. Bonas, U., Conrads-Strauch, J., & Balbo, I. (1993). Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Molecular and General Genetics, 238, 261–269.

    CAS  Google Scholar 

  24. Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., & Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 318, 645–648.

    Article  Google Scholar 

  25. Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501.

    Article  CAS  Google Scholar 

  26. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

    Article  CAS  Google Scholar 

  27. Murakami, M. T., Sforça, M. L., Neves, J. L., Paiva, J. H., Domingues, M. N., Pereira, A. L. A., et al. (2010). The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins, 78, 3386–3395.

    Article  CAS  Google Scholar 

  28. Deng, D., Yan, C., Pan, X., Mahfouz, M., Wan, J., Zhu, J., et al. (2012). Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 335, 720–723.

    Article  CAS  Google Scholar 

  29. Nga-Sze Mak, A., Bradley, P., Cernadas, R. A., Bogdanove, A. J., & Stoddard, B. L. (2012). The crystal structure of TAL Effector PthXo1 bound to its DNA target. Science, 335, 717–719.

    Google Scholar 

  30. Schornack, S., Ballvora, A., Gürlebeck, D., Peart, J., Baulcombe, D., Ganal, M., et al. (2004). The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant Journal, 37, 46–60.

    Article  CAS  Google Scholar 

  31. Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., et al. (2005). R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 435, 1122–1125.

    Article  CAS  Google Scholar 

  32. Bogdanove, A. J., Schornack, S., & Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Current Opinion in Plant Biology, 13, 394–401.

    Article  CAS  Google Scholar 

  33. Leach, J. E., Vera Cruz, C. M., Bai, J., & Leung, H. (2001). Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology, 39, 187–224.

    Article  CAS  Google Scholar 

  34. Swarup, S., Yang, Y., Kingsley, M. T., & Gabriel, D. W. (1992). An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhost. Molecular Plant-Microbe Interactions, 5, 204–213.

    Article  CAS  Google Scholar 

  35. De feyter, R., & Gabriel, D. W. (1991). At least six Avr genes are clustered on a 90-Kb plasmid in Xhanthomonas campestris pv. malvacearum. Molecular Plant-Microbe Interactions, 4, 423–432.

    Article  CAS  Google Scholar 

  36. Swarup, S., Feyter, R. D., Brlansky, R. H., & W, G. D. (1991). A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X.campestris to elicit canker like lesions in citrus. Phytopathology, 81, 802–809.

    Article  Google Scholar 

  37. Yang, Y., de Feyter, R., & Gabriel, D. W. (1994). Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Molecular Plant-Microbe Interactions, 7, 345–355.

    Article  CAS  Google Scholar 

  38. Kay, S., Boch, J., & Bonas, U. (2005). Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Molecular Plant-Microbe Interactions, 18, 838–848.

    Article  CAS  Google Scholar 

  39. Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., et al. (2006). Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes and Development, 20, 1250–1255.

    Article  CAS  Google Scholar 

  40. Yuan, M., Chu, Z., Li, X., Xu, C., & Wang, S. (2010). The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell, 22, 3164–3176.

    Article  CAS  Google Scholar 

  41. Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., et al. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 22, 3864–3876.

    Article  CAS  Google Scholar 

  42. Yu, Y., Streubel, J., Balzergue, S., Champion, A., Boch, J., Koebnik, R., et al. (2011). Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Molecular Plant-Microbe Interactions, 24, 1102–1113.

    Article  CAS  Google Scholar 

  43. Chen, L.-Q., Hou, B.-H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X.-Q., et al. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527–532.

    Article  CAS  Google Scholar 

  44. Sugio, A., Yang, B., Zhu, T., & White, F. F. (2007). Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIA gamma1 and OsTFX1 during bacterial blight of rice. PNAS, 104, 10720–10725.

    Article  CAS  Google Scholar 

  45. Geibler, R., Scholze, H., Hahn, S., Streubel, J., Bonas, U., Behrens, S., et al. (2011). Transcriptional activators of human genes with programmable DNA-specificty. PLoS ONE, 6, 1–6.

    Article  Google Scholar 

  46. Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, 773–782.

    Article  CAS  Google Scholar 

  47. Weinthal, D., Tovkach, A., Zeevi, V., & Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends in Plant Science, 15, 308–321.

    Article  CAS  Google Scholar 

  48. Li, T., Huang, S., Jiang, W., Wright, D., Spalding, M., Weeks, D., et al. (2011). TAL nucleases (TALNs) hybrid proteins composed of TAL effectors and Fokl DNA-cleavage domain. Nucleic Acids Research, 39, 359–372.

    Article  Google Scholar 

  49. Cermak, T., Doyle, E., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 1093, 1–11.

    Google Scholar 

  50. Mahfouz, M. M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., & Zhu, J. K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 108, 2623–2628.

    Article  CAS  Google Scholar 

  51. Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., et al. (2012). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757–761.

    Article  Google Scholar 

  52. Sander, J. D., Cade, L., Khayter, C., Reyon, D., Peterson, R. T., Joung, J. K., et al. (2011). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 29, 697–698.

    Article  CAS  Google Scholar 

  53. Tesson, L., Usal, C., Ménoret, S., Leung, E., Niles, B., Remy, S., et al. (2011). Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 29, 695–696.

    Article  CAS  Google Scholar 

  54. Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29, 731–734.

    Article  CAS  Google Scholar 

  55. Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143–148.

    Article  CAS  Google Scholar 

  56. Streubel, J., Blucher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30, 593–595.

    Article  CAS  Google Scholar 

  57. Mahfouz, M. M., & Li, L. (2011). TALE nucleases and next generation GM crops. GM Crops, 2, 99–103.

    Article  Google Scholar 

  58. Cade, L., Reyon, D., Hwang, W. Y., Tsai, S. Q., Patel, S., Khayter, C., et al. (2012). Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Research, 40, 8001–8010.

    Article  CAS  Google Scholar 

  59. Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug Ii, R. G., Tan, W., Penheiter, S. G., Ma, A. C., Leung, A. Y. H., Fahrenkrug, S. C., Carlson, D. F., Voytas, D. F., Clark, K. J., Essner, J. J. & Ekker, S. C. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature. doi:10.1038/nature11537.

  60. Moore, F. E., Reyon, D., Sander, J. D., Martinez, S. A., Blackburn, J. S., Khayter, C., et al. (2012). Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE, 7, e37877.

    Article  CAS  Google Scholar 

  61. Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., & Zhang, B. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 29, 699–700.

    Article  Google Scholar 

  62. Tong, C., Huang, G., Ashton, C., Wu, H., Yan, H., & Ying, Q.-L. (2012). Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. Journal of Genetics and Genomics, 39, 275–280.

    Article  CAS  Google Scholar 

  63. Liu, J., Li, C., Yu, Z., Huang, P., Wu, H., Wei, C., et al. (2012). Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. Journal of Genetics and Genomics, 39, 209–215.

    Article  CAS  Google Scholar 

  64. Sun, N., Liang, J., Abil, Z., & Zhao, H. (2012). Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Molecular BioSystems, 8, 1255–1263.

    Article  CAS  Google Scholar 

  65. Li, T., Huang, S., Zhao, X., Wright, D. A., Carpenter, S., Spalding, M. H., et al. (2011). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 39, 6315–6325.

    Article  CAS  Google Scholar 

  66. Reyon, D., Tsai, S. Q., Khayter, C., Foden, J. A., Sander, J. D., & Joung, J. K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology, 30, 460–465.

    Article  CAS  Google Scholar 

  67. Li, T., Liu, B., Spalding, M. H., Weeks, D. P., & Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30, 390–392.

    Article  CAS  Google Scholar 

  68. Watanabe, T., Ochiai, H., Sakuma, T., Horch, H. W., Hamaguchi, N., Nakamura, T., et al. (2012). Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nature Communications, 3, 1017.

    Article  Google Scholar 

  69. Yin, P., Deng, D., Yan, C., Pan, X., Xi, Jianzhong J., Yan, N. & Shi, Y. (2012). Specific DNA–RNA hybrid recognition by TAL effectors. Cell Reports, 2, 707–713.

Download references

Acknowledgments

The authors are grateful to the Colombian Ministry of Agriculture and the Direction of Research in Bogota (DIB) of the National Colombian University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo E. López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz Bodnar, A., Bernal, A., Szurek, B. et al. Tell Me a Tale of TALEs. Mol Biotechnol 53, 228–235 (2013). https://doi.org/10.1007/s12033-012-9619-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9619-3

Keywords

Navigation