Skip to main content
Log in

Isolation, Characterization, and Structure Analysis of a Non-TIR-NBS-LRR Encoding Candidate Gene from MYMIV-Resistant Vigna mungo

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Yellow mosaic disease of Vigna mungo caused by Mungbean yellow mosaic India virus (MYMIV) is still a major threat in the crop production. A candidate disease resistance (R) gene, CYR1 that co-segregates with MYMIV-resistant populations of V. mungo has been isolated. CYR1 coded in silico translated protein sequence comprised of 1,176 amino acids with coiled coil structure at the N-terminus, central nucleotide binding site (NBS) and C-terminal leucine-rich repeats (LRR) that belongs to non-TIR-NBS-LRR subfamily of plant R genes. CYR1 transcript was unambiguously expressed during incompatible plant virus interactions. A putative promoter-like sequence present upstream of this candidate gene perhaps regulates its expression. Enhanced transcript level upon MYMIV infection suggests involvement of this candidate gene in conferring resistance against the virus. In silico constructed 3D models of NBS and LRR regions of this candidate protein and MYMIV-coat protein (CP) revealed that CYR1-LRR forms an active pocket and successively interacts with MYMIV-CP during docking, like that of receptor–ligand interaction; indicating a critical role of CYR1 as signalling molecule to protect V. mungo plants from MYMIV. This suggests involvement of CYR1 in recognizing MYMIV-effector molecule thus contributing to incompatible interaction. This study is the first stride to understand molecular mechanism of MYMIV resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nariani, T. K. (1960). Yellow mosaic of mung (Phaseolus aurew L.). Indian Phytopathology, 13, 24–29.

    Google Scholar 

  2. Ahmad, M., & Harwood, R. F. (1973). Studies on a whitefly-transmitted yellow mosaic of urd bean (Phaseolus mungo). Plant Disease Report, 57, 800–802.

    Google Scholar 

  3. Thongmeearkjom, P., Kittipakorn, K., & Surin, P. (1981). Outbreak of mungbean yellow mosaic disease in Thailand. Thailand Journal of Agricultural Science, 14, 201–206.

    Google Scholar 

  4. Basak, J., Kundagramy, S., Ghose, T. K., & Pal, A. (2005). Development of yellow mosaic virus (YMV) resistance linked DNA-marker in Vigna mungo from population segregating for YMV reaction. Molecular Breeding, 14, 375–383.

    Article  Google Scholar 

  5. Flor, H. H. (1971). Current status of gene-for-gene concept. Annual Review of Phytopathology, 9, 275–296.

    Article  Google Scholar 

  6. Nimchuk, Z., Eulgem, T., Holt, I. B., & Dangl, J. L. (2003). Recognition and response in the plant immune system. Annual Review of Genetics, 37, 579–609.

    Article  CAS  Google Scholar 

  7. Carine, A. T., Wang, B. B., Majesta, S. O., Shweta, D., Zhu, H. Y., Bruce, R., et al. (2008). Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiology, 146, 5–21.

    Google Scholar 

  8. He, L. M., Du, C. G., Covaleda, L., Xu, Z. Y., Robinson, A. F., Yu, J. Z., et al. (2004). Cloning, characterization, and evolution of the NBS–LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Molecular Plant–Microbe Interactions, 17, 1234–1241.

    Article  CAS  Google Scholar 

  9. Chen, G. S., Pan, D. R., Zhou, Y. F., Lin, S., & Ke, X. D. (2007). Diversity and evolutionary relationship of nucleotide binding site encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam). Journal of Biosciences, 32, 713–721.

    Article  CAS  Google Scholar 

  10. McDowell, J. M., & Woffenden, B. J. (2003). Plant disease resistance genes: Recent insights and potential applications. Trends in Biotechnology, 21(4), 178–183.

    Article  CAS  Google Scholar 

  11. Miller, R. N., Bertioli, D. J., Baurens, F. C., Santos, C. M., Alves, P. C., Martins, N. F., et al. (2008). Analysis of non-TIR-NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development, and physical mapping. BMC Plant Biology, 8, 15.

    Article  Google Scholar 

  12. Radwan, O., Gandhi, S., Heesacker, A., Whitaker, B., Taylor, C., Plocik, A., et al. (2008). Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Molecular Genetics & Genomics, 280, 111–125.

    Article  CAS  Google Scholar 

  13. Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide binding superfamily. Plant Journal, 20, 317–332.

    Article  CAS  Google Scholar 

  14. Pan, Q., Wendel, J., & Fluhr, R. (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. Journal of Molecular Evolution, 50, 203–213.

    CAS  Google Scholar 

  15. Tameling, W. I. L., Elzinga, S. D., Darmin, P. S., Vossen, J. H., Takken, F. L., Haring, M. A., et al. (2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell, 14, 2929–2939.

    Article  CAS  Google Scholar 

  16. Chattopadhyaya, R., & Pal, A. (2008). Three-dimensional models of NB-ARC domains of disease resistance proteins in tomato, Arabidopsis, and flax. Journal of Biomolecular Structure and Dynamics, 25(4), 357–372.

    Article  CAS  Google Scholar 

  17. Belkhadir, Y., Subramaniam, R., & Dangl, J. L. (2004). Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Current Opinion in Plant Biology, 7, 391–399.

    Article  CAS  Google Scholar 

  18. Jones, D. A., & Jones, J. D. G. (1996). The roles of leucine-rich repeats in plant defenses. Advances in Botanical Research, 24, 90–167.

    Google Scholar 

  19. Rairdan, G., & Moffett, P. (2007). Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes and Infection, 9, 677–686.

    Article  CAS  Google Scholar 

  20. Takken, F. L. W., Albrecht, M., & Tameling, W. I. L. (2006). Resistance proteins: Molecular switches of plant defence. Current Opinion in Plant Biology, 9, 383–390.

    Article  CAS  Google Scholar 

  21. Vlot, A. C., Klessig, D. F., & Park, S. W. (2008). Systemic acquired resistance: The elusive signal(s). Current Opinion in Plant Biology, 11, 436–442.

    Article  CAS  Google Scholar 

  22. Pal, A., Chakrabarti, A., & Basak, J. (2007). New motifs within the NB-ARC domain of R proteins: Probable mechanisms of integration of geminiviral signatures within the host species of Fabaceae family and implications in conferring disease resistance. The Journal of Theoretical Biology, 246(3), 564–573.

    Article  CAS  Google Scholar 

  23. Maiti, S., Basak, J., Kundagrami, S., Kundu, A., & Pal, A. (2010). Molecular marker-assisted genotyping of Mungbean yellow mosaic India virus resistant germplasms of mungbean and urdbean. Molecular Biotechnology, 47, 95–104.

    Article  Google Scholar 

  24. Kundagrami, S., Basak, J., Maiti, S., Kundu, A., Das, B., Ghose, T. K., et al. (2009). Agronomic, genetic and molecular characterization of MYMIV-tolerant mutant lines of Vigna mungo. International Journal of Plant Breeding and Genetics, 3(1), 1–10.

    Article  CAS  Google Scholar 

  25. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  26. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  27. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  28. Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.

    Article  CAS  Google Scholar 

  29. Higo, K., Ugawa, Y., Iwamoto, M., & Orenaga, T. K. (1999). Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research, 27, 297–300.

    Article  CAS  Google Scholar 

  30. Lesct, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acid Research, 30, 325–327.

    Article  Google Scholar 

  31. McMaugh, S. J., & Lyon, B. R. (2003). Real-time quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis. Biotechniques, 34, 982–986.

    CAS  Google Scholar 

  32. Tang, S., Hass, C. G., & Knapp, S. J. (2006). Ty3/gypsy-like retro-transposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theoretical and Applied Genetics, 113, 783–799.

    Article  CAS  Google Scholar 

  33. Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR secondary structure prediction method version IV. Methods in Enzymology, 266, 540–553.

    Article  CAS  Google Scholar 

  34. Jaroszewski, L., Rychlewski, L., Li, Z., Li, W., & Godzik, A. (2005). FFAS03: A server for profile–profile sequence alignments. Nucleic Acids Research, 33, 284–288.

    Article  Google Scholar 

  35. Pieper, U., Eswar, N., Webb, B. M., Eramian, D., Kelly, L., Barkan, D. T., et al. (2009). MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Research, 37, 347–354.

    Article  Google Scholar 

  36. Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253, 164–170.

    Article  CAS  Google Scholar 

  37. Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on TM-score. Nucleic Acids Research, 33, 2302–2309.

    Article  CAS  Google Scholar 

  38. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  39. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  Google Scholar 

  40. Tovchigrechko, A., & Vakser, I. A. (2006). GRAMM-X public web server for protein–protein docking. Nucleic Acids Research, 34, 310–314.

    Article  Google Scholar 

  41. Riedl, S. J., Li, W., Chao, Y., Schwarzenbacher, R., & Shi, Y. (2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature, 434, 926–933.

    Article  CAS  Google Scholar 

  42. Wang, H. Y., Yang, W. X., Zhang, L. R., Meng, Q. F., Liu, D. Q., & Zhang, T. (2006). Isolation and characterization of resistance gene homology sequence from wheat. Journal of Phytopathology, 154, 670–675.

    Article  CAS  Google Scholar 

  43. Bai, J., Pennill, L. A., Ning, J., Lee, S. W., Ramalingam, J., Webb, C. A., et al. (2002). Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Research, 12, 1871–1884.

    Article  CAS  Google Scholar 

  44. Campbell, T. A. (2003). Investigation of variations in NBS motifs in alfalfa (Medicago sativa), M. edgeworthii and M. ruthenica. Canadian Journal of Plant Science, 83, 371–376.

    Article  Google Scholar 

  45. David, P., Chen, N. W., Pedrosa-Harand, A., Thareau, V., Sevignac, M., Cannon, S. B., et al. (2009). A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiology, 151(3), 1048–1065.

    Article  CAS  Google Scholar 

  46. Geffroy, V., Macadre, C., David, P., Pedrosa-Harand, A., Sevignac, M., Dauga, C., et al. (2009). Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics, 181(2), 405–419.

    Article  CAS  Google Scholar 

  47. Eulgem, T., Rushton, P. J., Robatzek, S., & Somssich, I. E. (2000). The WRKY subfamily of plant transcription factors. Trends in Plant Science, 5, 199–206.

    Article  CAS  Google Scholar 

  48. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., et al. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Reviews Genetics, 26, 403–410.

    Article  CAS  Google Scholar 

  49. Mohr, T. J., Mammarella, N. D., Hoff, T., Woffenden, B. J., Jelesko, J. G., & McDowell, J. M. (2010). The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. Molecular Plant–Microbe Interactions, 23(10), 1303–1315.

    Article  CAS  Google Scholar 

  50. Lahaye, T. (2002). The Arabidopsis RRS1-R disease resistance gene—uncovering the plant’s nucleus as the new battlefield of plant defense? Trends in Plant Science, 7, 425–427.

    Article  CAS  Google Scholar 

  51. Bakker, E. G., Toomajian, C., Kreitman, M., & Bergelson, J. (2006). A genome wide survey of R gene polymorphisms in Arabidopsis. Plant Cell, 18, 1803–1818.

    Article  CAS  Google Scholar 

  52. Yang, S., Feng, Z., Zhang, X., Jiang, K., Jin, X., Hang, Y., et al. (2006). Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Molecular Biology, 62, 181–193.

    Article  CAS  Google Scholar 

  53. Ding, J., Zhang, W., Jing, Z., Chen, J. Q., & Tian, D. (2007). Unique pattern of R-gene variation within populations in Arabidopsis. Molecular Genetics & Genomics, 277, 619–629.

    Article  CAS  Google Scholar 

  54. Peraza-Echeverria, S., Dale, J. L., Harding, R. M., Mike, K., Smith, M. K., & Collet, C. (2008). Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Molecular Breeding, 22, 565–579.

    Article  CAS  Google Scholar 

  55. Yoshimura, S., Yamanouchi, U., Katayous, Y., Toki, S., Wang, Z. X., Kono, I., et al. (1998). Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America, 95, 1663–1668.

    Article  CAS  Google Scholar 

  56. Wang, Z. X., Yamanouchi, U., Katayose, Y., Sasaki, T., & Yano, M. (2001). Expression of Pib rice-blast-resistance gene family is up-regulated by environmental conditions favoring infection and by chemical signals that trigger secondary plant defences. Plant Molecular Biology, 47, 653–661.

    Article  CAS  Google Scholar 

  57. Wan, H., Zhao, Z., Malik, A. A., Qian, C., & Chen, J. (2010). Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biology, 10, 186.

    Article  Google Scholar 

  58. Radwan, O. (2010). Isolation and expression of an NBS-LRR protein-encoding resistance gene candidate that segregates with a rust resistance gene in sunflower. Journal of Phytopathology, 158, 433–443.

    Article  CAS  Google Scholar 

  59. van der Biezen, E. A., & Jones, J. D. G. (1998). The NB-ARC domain: A novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Current Biology, 8, 226–227.

    Article  Google Scholar 

  60. Martin, G. B., Bogdanove, A. J., & Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 54, 23–61.

    Article  CAS  Google Scholar 

  61. Boyes, D. C., Nam, J., & Dangl, J. L. (1998). The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proceedings of the National Academy of Sciences of the United States of America, 96, 3292–3297.

    Google Scholar 

  62. Yan, N., Chai, J., Lee, E. S., Gu, L., Liu, Q., He, J., et al. (2005). Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature, 437, 831–837.

    Article  CAS  Google Scholar 

  63. Albrecht, M., & Takken, F. L. (2006). Update on the domain architectures of NLRs and R proteins. Biochemical and Biophysical Research Communications, 339, 459–462.

    Article  CAS  Google Scholar 

  64. McDowell, J. M., Dhandaydha, M., Long, T. A., Aarts, M. G., Goff, S., Holub, E. B., et al. (1998). Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell, 10, 1861–1874.

    CAS  Google Scholar 

  65. Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B. S., & Michelmore, R. W. (1998). Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell, 10, 1833–1846.

    CAS  Google Scholar 

  66. Shen, Q. H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K., & Schulze-Lefert, P. (2003). Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell, 15, 732–744.

    Article  CAS  Google Scholar 

  67. Rairdan, G. J., & Moffett, P. (2006). Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell, 18, 2082–2093.

    Article  CAS  Google Scholar 

  68. Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G., et al. (2006). The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant–Microbe Interactions, 19, 1216–1228.

    Article  CAS  Google Scholar 

  69. Ellis, J. G., Dodds, P. N., & Lawrence, G. J. (2007). Flax rust resistance gene specificity is based on direct resistance–avirulence protein interactions. Annual Review of Phytopathology, 45, 289–306.

    Article  CAS  Google Scholar 

  70. Chang, J. H., Goel, A. K., Grant, S., & Dangl, J. L. (2004). Wake of the flood: Ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Current Opinion in Microbiology, 7, 11–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Director, Bose Institute for providing us the lab facilities and for a senior research fellowship to S.M. We also thank the Department of Biotechnology, India, for the financial assistance (Sanction no. BT/01/COE/06/03) and for granting a RAship to S.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2011_9488_MOESM1_ESM.tif

Supplementary Fig. 1: RLM-RACE products. 5′RP represents the nested 5′ RACE product (a) and 3′RP represents the 3′ RACE product (b), M = molecular weight marker (100 bp + 1.5 kb). (TIFF 5069 kb)

12033_2011_9488_MOESM2_ESM.tif

Supplementary Fig. 2: NCBI-Conserved domain search result of CYR1. Domain search result shows presence of the NB-ARC domain and leucine rich repeats (TIFF 3102 kb)

12033_2011_9488_MOESM3_ESM.tif

Supplementary Fig. 3: Secondary structure of CYR1 protein of Vigna mungo predicted through GorIV server. Predicted secondary structure of CYR1 revealed alpha helix, extended strand and random coil regions represented by blue, red and pink colour bars, respectively. (TIFF 753 kb)

Supplementary Fig. 4: PROSA energy plot calculated for the CYR1-NBS homology model. (TIFF 1856 kb)

12033_2011_9488_MOESM5_ESM.tif

Supplementary Fig. 5: PROSA Z-score value. PROSA Z-score value calculated for the CYR1-NBS homology model is -3.7, as shown by arrow. (TIFF 1640 kb)

12033_2011_9488_MOESM6_ESM.tif

Supplementary Fig. 6: The receptor–ligand interaction between CYR1-LRR and MYMIV-CP predicted by GRAMM-X and represented in surface structure using PyMol. (TIFF 8069 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, S., Paul, S. & Pal, A. Isolation, Characterization, and Structure Analysis of a Non-TIR-NBS-LRR Encoding Candidate Gene from MYMIV-Resistant Vigna mungo . Mol Biotechnol 52, 217–233 (2012). https://doi.org/10.1007/s12033-011-9488-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9488-1

Keywords

Navigation